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Abstract 

   In this paper, we develop a novel approach for bidirectional brain-machine interface (BMI). First, we 
propose a neural network model for sensory cortex (S1) connected to the neural network model of motor 
cortex (M1) considering the topographic mapping between S1 and M1. We use 4-box model in S1 and 4-
box in M1 so that each box contains 500 neurons. Individual boxes are composed of two neural 
populations: inhibitory interneurons and pyramidal neurons. Next, we develop a new BMI algorithm 
based on neural firing. The main concept of these BMI algorithm is to close the loop between two 
components: the sensory interface and the motor interface. The sensory interface encodes some of the 
state parameters of the external device into an electrical stimulus delivered to the S1 model. The motor 
interface takes neural recordings from the M1 model and decodes them into a force applied to the object. 
We present the simulation results for the on line BMI which means that there is a real time information 
exchange between the S1-M1 network model and the external device.  
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1. Introduction  

   A long time has passed since the first demonstration of a robotic manipulator controlled by neuronal 
activity. The rising prospect of brain machine interfaces has since then seen a remarkable scientific 
revolution [Tiwari et al. 2020]. The idea of controlling robotic devices by brain activities has been driven 
by two different viewpoints. One is providing paralytic people with a “new channel to the world”. The 
other is to provide researchers in neuroscience with a new family of experimental tools to answer basic 
questions, such as how the known mechanism of neuroplasticity may provide the physiological 
foundation for learning and memory [Vato et la., 2014, Vato et la., 2012]. While in the last decade there 
have been significant advances on both perspectives, there are still practical and conceptual challenges 
which remain widely open.  

   The brain-machine interfaces (BMIs) are devices that decode neural activity, maintaining two main 
approaches: one is based on decoding as a proxy for the intended state of motion, or for muscle 
activations. The other view is based on decoding high-level motor goals from neural activity, and to 
communicate this goal to an artificial controller in charge of its execution. In both approaches, the focus 
is on decoding neural signals, and it has been only recently that attention has been devoted to the 
problem of electrical stimulation of the brain based on the machine movement position. Most BMI 
researchers typically consider controlling an external device based on decoding neural activity or play a 
computer game by the subjects. A motor BMI system consists of four basic elements: recording 
technology to extract brain activity, decoding algorithm to translate brain activity to the predicted 
movement of the external device, external device (prosthetic limb such as a robotic arm), and encoding 
interface to convert the motion of the external device to electrical stimulation of the brain. Therefore, in 
such controlling systems like BMI, feedback is an essential part of the system in developing the closed-
loop brain-machine interface. Most current studies employ visual feedback to the subject for error 
correction and algorithm learning.  

   In Sensory BMIs, a direct connection pathway is considered from an external device, e.g. an artificial 
retina, to the nervous system; while in the bidirectional BMIs, a bi-directional direct communication is 
established between the nervous system and an external device. The former has been a subject of 
research for a longer time, and is primarily utilized to help a person communicate a message to his/her 
environment through an external device like a computer or prostheses, whereas the latter is more 
complicated, therefore also being a more recent subject. This kind of BMI might have the potential to 
restore motor function or impaired neural activity, by means of simply put helping to “retrain the brain” 
[Carmena, 2013]. The concept of bidirectional brain machine interfaces has been studied by Fetz [Moritz 
et al. 2008], Ivaldi [Ivaldi et al. 2010]. Ivaldi defines the bidirectional brain machine interface as “a fancy 
combination of neural decoding and simulation apparatus, connected via an artificial body” [Ivaldi et al. 
2010]. Fetz proposed inducing plastic changes driven by sensorimotor interaction, however did not 
investigate the different techniques to accomplish his proposition [Jackson and Fetz, 2011]. Figure 1 
shows the bidirectional BMI. In this setup, the sensory information about the current state of the external 
system was conveyed to the neural preparation by means of electrical pulse trains of variable frequencies, 
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delivered by electrode to S1. Population spike trains extracted in real time from extracellular multiunit 
recording from M1 were transformed into a control signal used to drive the external system. Indeed, the 
main idea of the bidirectional BMI algorithm is the transformation of information about the state of the 
device into brain activity using electrical stimulation and then decoding of motor cortical activity into a 
set of forces needed to accomplish the task such as reaching a target.  

 

 

 

 

 

 

 

 

 

   In this research, we address the bidirectional BMI from a modeling point of view. We begin by simulating 
the primary somatosensory cortex (S1) and vibrissal motor cortex (M1) with a sparsely connected 
network of excitatory and inhibitory neurons modeling a local cortical population. The model used for 
both S1-M1 is a 4- box model with a distant dependent connectivity among boxes. Individual box is 
composed of 400 pyramidal neurons and 100 interneurons. Then, by considering the topographic 
mapping, the S1-M1 network model is developed. In this way, it is supposed that one micro wire array 
delivers the micro stimulation to the S1 model and the second micro wire array records the neural signals 
from M1 model. Next, a novel BMI algorithm is introduced to control the motion state of a simulated 
point mass in a viscous medium toward a target region.  

   This algorithm uses the total number of firings to determine the position of our medium. The main idea 
of this algorithm is to close the loop between two components: the sensory interface and the motor 
interface. The sensory interface encodes the position of the point mass into an electrical stimulus 
delivered to the S1 model. The motor interface takes neural recordings from the M1 model and decodes 
them into a force applied to the device, which leads to evolve to the next position. The brain is informed 
about the new position by the sensory interface and generates a new motor cortical response.  

Figure 1. The bidirectional BMI. The recording and stimulating arrays are placed on the motor (M1) and 
sensory areas (S1) of the cortex, respectively. 
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   The rest of the paper is organized as follows: Section 2 introduces the S1, M1 models to create a S1-M1 
network. The BMI algorithm is explained in Section 3. The simulation results are discussed in Section 4 
and Finally Section 5 concludes the paper.  

2. Neural Network Model  

   To understand the rules of translation between the sensory stimuli and the fluctuations of cortical 
responses, a connected network of excitatory and inhibitory neurons are simulated. In this Section, we 
first explain the network model that is used for Sensory cortex (S1), next the neural model of Motor cortex 
(M1) and then its connection to the S1 model are described.  

2.1. The S1 network model  

   The S1 network model is composed of leaky integrate-and-fire neurons and is based on the model 
developed by [Mazzoni et al.,2008]. Figure 2 shows the main components of the network.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. Design and Procedure Figure 2. (a) The main components of the network which are interneurons, pyramidal neurons and excitatory and 
inhibitory synapses. (b) A time-varying rate of Poissonian spike trains as an input to network which average value is 

1.2 spikes/ms. 
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   The model network represents in a very simplified way a local circuit in S1 cortex, and are composed of 
two neuronal populations: inhibitory interneurons and pyramidal neurons. The network connectivity was 
random and sparse with a 0.1 probability of directed connection between any pair of neurons. Synaptic 
activities are composed of AMPA currents (excitatory synaptic activities) and GABA currents (inhibitory 
synaptic activities). In order to simulate the activity from afferents, excitatory and inhibitory neural 
populations are excited using noisy external input.  

We partition the S1 model into four boxes (2 by 2). Inside each box, there are 100 interneurons and 400 
pyramidal neurons. So, the total number of neurons for 4-box model are 2000 neurons. The membrane 
potential of neuron k is formulated as follows:  

𝜏!
𝑑𝑣"
𝑑𝑡 = −𝑣" + 𝐼#$ − 𝐼%$ ,																																															(1) 

where membrane time constant, excitatory (AMPA type) synaptic currents, and inhibitory (GABA-type) 
currents received by neuron 𝑘 are denoted by 𝜏! (20 ms for excitatory neurons, 10 ms for inhibitory 
neurons), 𝐼#$, 𝐼%$, respectively. In Eq. 1 the resting potential and threshold are considered zero and 18 
mV, respectively. Synaptic currents are the linear sum of contributions induced by single pre-synaptic 
spikes, which are described by a difference of exponentials. They can be obtained using auxiliary variables 
𝑥#$,	𝑥%$. AMPA and GABA-type currents of neuron k as follows:  

𝜏&#
𝑑𝐼#"
𝑑𝑡 = −𝐼#" + 𝑥#$ ,																																																																																																																																						(2) 

𝜏'#
𝑑𝑥#"
𝑑𝑡 = −𝑥#" + 𝜏! 1𝐽"()*'3 𝛿5𝑡 − 𝑡"(+*' − 𝜏,6 +

+*'
𝐽"(-./3 𝛿(𝑡 − 𝑡"(-./ − 𝜏,)

-./
7,				(3) 

𝜏&%
𝑑𝐼%"
𝑑𝑡 = −𝐼%" + 𝑥%$ ,																																																																																																																																						(4) 

𝜏'%
𝑑𝑥#%
𝑑𝑡 = −𝑥#% + 𝜏! :𝐽"(01/3 𝛿(𝑡 − 𝑡"(01/ − 𝜏,)

01/
;.																																																																								(5) 

   The values of parameters are taken from [Mazzoni et al.,2008]. The external excitatory input by random 
Poisson spike trains (in the form of time varying rate) identically is fed to each excitatory and inhibitory 
neuron by the following equation:  

𝑣-./(𝑡) = [𝑣203145(𝑡) + 𝑛(𝑡)]6,																							(6) 
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where 𝑣203145(𝑡) represents the signal, and 𝑛(𝑡) is the noise. […] is a threshold-linear function, [𝑥]6 = 𝑥 
if 𝑥 > 0, [𝑥]6 = 0 otherwise. A stochastic variable, 𝑛(𝑡) based on Ornstein-Uhlenbeck process is defined 
as follows: 

𝜏1
𝑑𝑛(𝑡)
𝑑𝑡 = −𝑛(𝑡) + 𝜎1 EF

2
𝜏1
G𝜂(𝑡),																						(7)		 

where 𝜎1 is the standard deviation of the noise, and 𝜂(𝑡) is a Gaussian white noise.  

   Individual boxes are connected with a function of the form 𝐾𝑒𝑥𝑝((7
!

8.:
), where 𝐾 is a scaling factor and 

𝑅 is the distance between different boxes. The connectivity pattern of the 2000 neurons (4-box model) is 
shown in Figure 3.  

 

  

 

 

  

 

 

 

 

 

 

   We quantified the neural activity by monitoring the spike activity of the individual neuron which is called 
'firing rate' (this measurement is obtained by counting the number of spikes fired by neurons in a 1 ms 
bin), and the average synaptic currents [Logothetis 2003, Kamondi et al,.1998]. 

 

Figure 3. 100 interneurons and 400 pyramid neurons create each box of neural network as S1 model. The connection 
between any pair of neurons in each box is random with probability 0.1. 
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   Figure 4 demonstrates the spiking behavior of the system with different rates of the input signal (1.2 
and 2 spikes/ms). Raster plots in Figure 4 (a),(b) show that the neuronal firing was sparse in all conditions. 
Though spiking activity of single cells was seemingly random, inspection of the total firing rate from the 
pyramidal and the interneuronal population Figure 4(a),(b) showed that increasing the input signal rate 
causes an increasing average firing rate in the neural activities and consequently appearing synchronous 
spiking patterns in network activity.  

 

 

 

 

 

 

 

 

 

 

 

 

2.2. The M1 network model  

   The M1 network model is similar to the S1 model and it is also composed of a population of interneurons 
and pyramidal neurons except that we slightly changed the parameters values to have two different 
models. For the 4-box S1 model, we developed the 4-box M1 model. Fig.5 shows the dynamics of the 
same box of Fig.4 for the M1 network model.  

 

Figure 4. Dynamics of the network receiving a signal, box #3 of the 4-box S1 model, with two different rates (left 
column: 1.2 and right column: 2 spikes/ms), superimposed to noise. In each column, all panels show the same 400 

ms interval (extracted from a 1 seconds simulation). (a), (b)Raster plot of the activity of 100 randomly selected 
pyramidal neurons. 
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2.3. The S1-M1 network model  

   Some experimental observation proved that a focal activation of S1 causes a relatively localized 
activation of M1 [Fries et al.,2001; Geisler et al.,2005; Gil and Amitai ,1996, Li et al. 2019]. In order to 
simulate the similar situation, each box of the S1 is connected to the corresponding box of M1. This means 

that ith-box of S1 is connected to ith-box of M1. A connecting coefficient based on mean firing rate of 
pyramidal neurons of each box of S1 (K*<FR>PY) is added to the corresponding box of M1 as excitatory 

input. Therefore, Eq. (6) for ith-box of M1 is enhanced as follows:  

𝑣-./(0/;(<=.(>"(𝑡) = [𝑣203145(𝑡) + 𝑛(𝑡)]6 + 𝐾 ∗	< 𝐹𝑅 >)?,0/;(<=.(A" .																						 (8) 

   In the model, we assume that the excitation and recording electrodes have the same number and shape 
in the corresponding regions of S1 and M1. So that when a stimulus occurs in an area of S1, this stimulus 
is sensed at the corresponding recording electrode of M1, and this interaction is also observed in real 
data [Geisler et al,.2005].  

Figure 5. Dynamics of the neuronal network, box #2 of the 4-box M1 model, receiving a signal with two different 
rates (left column: 1.2 and right column: 2 spikes/ms), superimposed to noise. In each column, all panels show the 
same 400 ms interval (extracted from a 1 seconds simulation). (a) , (b) Raster plot of the activity of 100 randomly 

selected pyramidal neurons. 
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   In the simulation process, by moving the stimulus electrodes, we create the excitation in different areas 
of S1. Considering Figure 6 one can notifies that the total firing rate increases for that box of M1 
corresponding to the stimulated box of S1 and there is a gradient in the recorded activities of M1 network. 
This helps to consider a total firing rate as a feature for bidirectional brain-machine interface. This issue 
will be explained in detail the subsequent sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. BMI algorithm  

   In the BMI by closing the loop between sensory cortex and motor cortex, the artificial hand (external 
device) will be able to control. The sensory interface maps some of the state parameters of the external 
device such as position of the end point into one of a set of electrical stimulation delivered to a cortical 
sensory area. The result of this operation is that the activity evoked in this sensory area encodes the state 
parameters of the device. The role of the motor interface is to record neural activity from a motor-cortex 
region and translate it into a force for moving the external device. Hence, the device evolves to the next 
state. The new position is received by the sensory area and converted into a stimulus and subsequent 

Figure 6. Firing rate of randomly selected 5 neurons from each box of M1 per sensory stimulation. 
In this simulation, we used a 4-box model for S1 and M1. It is assumed that both stimulating and 
recording electrodes are arranged in a 2*2 grid. Due to a distant dependent connectivity among 

neurons in S1 and M1, stimulating 4 different electrodes (boxes) of S1, one by one, yields a 
gradient in the evoked spikes in M1. 
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motor response, which again leads to the production of new force and movement of the artificial limb, 
and this loop is repeated until the external device reaches the target location.  

   A set of sensory stimuli and spike responses received from the motor cortex are used as calibration data 
to determine the sensor parameters and zoning of the artificial limb movement space. Then the ability of 
the closed loop BMI algorithm in the interaction of sensory and motor for controlling the movement of 
robotic arm is evaluated.  

   In fact, the BMI algorithm based on the maximum Firing rate as decoding algorithm, calibrate sensory 
interface in movement of external device according to the desired force field of Figure 7. The force field 
𝜙(𝑥) is a force which is applied to the external device in the coordinates of 𝑥 as follows:  

𝜙(𝑥) = 𝐾(𝑥)(𝑥 − 60)(𝑥 + 60).																										(9) 

   Figure 7 indicates the desired force field which can control device movement toward an equilibrium 
state in the origin.  

 

 

 

 

 

 

 

 

 

   In fact, the trajectories in Figure 7 show the mechanical arm that is supposed to move toward the center 
on the plane (sensory interface). 

   In the simulation steps of the BMI algorithm test, the mechanical arm starts moving from the initial 
position 𝑥B at zero velocity on the sensory interface plane. The initial position 𝑥B through Eq.10 (the 

Figure 7. The desired force field in sensory interface. 

A New Brain-Machine Interface Algorithm 4 (2023) 1-17 10



                                                                                                                                                   Amiri et al. 

 

encoding algorithm) and corresponding to the area of the external device in sensory interface is 
converted to electrical stimulus �̃�:  

�̃� = 𝑎𝑟𝑔𝑚𝑖𝑛(‖𝑥B − 𝜉0‖),						𝑖 = 1,… ,𝑀																					(10) 

where, the center of each region in sensory interface and number of simulation patterns are denoted by 
𝜉0 	and M, respectively. The encoding algorithm provide stimulus �̃� to excite S1 model and consequently, 
spiking response �̃�  from the M1 can be recorded. In the next step, the motor interface or the decoding 
algorithm converts the recorded spike �̃�  into force. Then the calculated force is applied to the mechanical 
arm and we allow the arm to move at a fixed time interval and reach position 𝑥C, and finally this loop will 
continue. When external device reaches the target region, the algorithm converges, and when the 
number of iterations of the algorithm exceeds the maximum iterations (40), the algorithm diverges. 
Operating the simulation steps of the algorithm test requires calibration of the sensory interface, which 
is described in the next section.  

3.1 Calibration of the sensory interface  

   In proportion to the electrical stimulation, a map is created from the position of the mechanical system 
so that the sensory interface can be calibrated. The final product is to partition of the position space of 
the external device into a set of sensory regions, such that each being associated to a particular electrical 
stimulus. The following is a detailed description of the sensory interface calibration.  

   Assume that a set of electrical stimuli 𝑠 = {𝑠C, 𝑠D, … , 𝑠>} should be applied. Consequently, a set of 
recording spike from motor cortex in response to each electrical stimulus obtain which called “calibration 
responses 𝑅“: 

𝑅 = a𝑟0,Eb,									𝑖 = 1,… ,𝑀; 					𝑗 = 1,… ,𝑁																																		(11) 

   Each response, 𝑟0,E  consists of a sequence of spike times for each of the recorded neurons in a simulated 
0-600 ms post-stimulation window. We implemented algorithm that translate the current response 𝑟 into 
a point in the position space of the mechanical system. 

   As is evident from Figure 6, among firing rate of the recorded spikes from each box of M1 model, there 
is a gradient. So in the decoding algorithm, we simply sum the number of spikes recorded from 5 selected 
neurons in each M1-boxes for individual trials. In this way, we create an A matrix whose its elements are 
the total number of firings of individual box: 

𝐴 = a𝑎+,Fb,									𝑝 = 1,… ,𝑀 × 𝑁; 					𝑞 = 1,… ,𝑀																																		(12) 
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   Then the symmetric distance matrix 𝐷 = [𝑑",5] obtained by calculating the Euclidean distance between 
the data of matrix 𝐴 is calculated. Therefore, distance matrix 𝐷 is formed based on total firing. Using 
multi- dimensional scaling function in MATLAB, matrix 𝐷 which is based on distance of total firing is 
clustered: 

𝑥 = a𝑥0,Eb,												a𝑥0,Eb = 	 [𝑥C,0,E , 𝑥D,0,E]G ,																																			(13) 

where 𝑖, 𝑗 are proportional to the dimensions of M and N, respectively. The obtained locations are 
multiplied by a fixed factor f in order to fit the movement space with dimensions of 100 × 100 (the 
position space is shown in Figure 8):  

𝑥j = a𝑥j0,Eb = 𝑓. 𝑥																																																																													(14) 

   Finally, by averaging the points of each cluster, the centers of the clusters are calculated:  

𝜉0 =
1
𝑁3𝑥j0,E

H

EIC

,																	𝑖 = 1,… ,𝑀																																									(15) 

 

   Using the obtained M cluster centers and the nearest neighbor algorithm, the movement space is 
divided into M regions as shown in Figure 8(b). Figure 8 shows the sensory regions for the 4-box model 
of S1-M1 network, which is the calibration of the sensory interface using the total firing rate. For these 
simulations, we stimulate each box 20 trails with different noise realization and then record 5 randomly 
selected neurons from individual boxes. In this configuration, each stimulation pattern was constituted 
by the activation of only one of the stimulating electrodes (box). This figure is in line with Figure 6, which 
previously showed the topographic mapping for the 4-box S1-M1 network model. Since we have 4 stimuli 
and 20 trials, we will have 4 sets (cluster of points) which contains 20 points, which obtained by projecting 
the distance matrix, 𝐷, into in 2-dimensional space using MDS. Then, applying nearest neighbor 
algorithm, the sensory map is created. The calibration centers were showed as a square in data points 
and colored regions. As this figure illustrates, the BMI algorithms create 4 distinct regions and it has a 
good performance.  

The within-class scatter matrix (𝑆J) and between class scatter matrix (𝑆K) which define Class Scatter 
Measure (CSM (J)) was used to qualify the performance of the proposed algorithm to classify the data 
into four classes:  
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𝑆J =3m35𝑥0,E −𝑚065𝑥0,E −𝑚06
G

1#

E(C

n
L

0(C

,																																																	(16) 

𝑆K =3𝑛0

L

0(C

(𝑚0 −𝑚)(𝑚0 −𝑚)G ,																																																													(17) 

𝐽 = 	
𝑆K
𝑆J

.																																																																																																												(18) 

The number of classes, number of samples in i-th class, the j-th sample in the i-th class, mean of samples 
in the i-th class and mean of all samples are denoted by 𝑐, 𝑛𝑖, 𝑥0,E , 𝑚𝑖,𝑚, respectively. 
In Table 1 we show CSM for simulation data. Large values of 𝐽 are desirable because distance between-
class is large and within-class is low.  

Figure 8. Results of the calibration of sensory interface using the total firing algorithms. The goal of the 
calibration procedure is to define the sensory regions by partitioning the position space of the controlled 

device. Here, we used a 4- box S1-M1 network model and each time we stimulated one box, 20 times 
with different noise realization and hence we have 4 sets (cluster of points) which contains 20 points. (a): 

projecting the distance matrix, D, into in 2-dimensional space using MDS and (b) show the sensory 
regions obtained using a nearest neighbor algorithm. The squares show the centers of clusters. 
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3.2 The motor interface  

   The motor interface as decoding algorithm converts the recorded spike response �̃� from M1 into a force, 
which can drive the external device along the target region with the following dynamical equation:  

𝑀. �̈� + 𝐵. 𝑥 = 𝐹,																																																												(19) 

where 𝐹 is the force obtained from the neural response using motor interface, 𝐵 = 13	𝑁. 𝑠/𝑚 is a force 
due to the viscosity 𝑥 = [𝑥C, 𝑥D]G, is the position of the trajectories as external device on a plane and 𝑀 =
10	𝐾𝑔 is the device weight. Eq. 19 was solved based on Runge-Kutta algorithm to calculate the new 
position x of external device after applying the force 𝐹. 

   To map current response �̃�  into a force, we calculate the distances between the currently recorded �̃� 
and all the responses in the calibration trials. These distances are stored in a matrix 𝐷s: 

𝐷s = a𝑑t0,Eb,							𝑖 = 1,… ,𝑀,						𝑗 = 1,… ,𝑁																												(20) 

   Following [Vato et la., 2014, Vato et la., 2012], we compute the average of the distances 𝑑t4M30 , and then 
decode the stimulus  �̃�&-L  whose calibration responses gave the smallest average distance  

�̃�&-L = 𝑎𝑟𝑔𝑚𝑖𝑛05𝑑t4M30 6,												𝑖 = 1,… ,𝑀																									(21) 

   The force vector applied to the external device is the same as the force value given by the force field at 
the position of the calibration center corresponding to the decoded stimulus:  

𝐹 = 𝜙(𝑥M),								𝑤𝑖𝑡ℎ			𝑥M = 𝜉2̃$%& .																																										(22) 

 

4. Results  

   As explained in the previous sections, we proposed 4-box models for the S1-M1 network. Next, we 
explained the neural firing BMI algorithm and also the sensory/ motor interfaces (encoding/decoding 
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parts) were described. Now, in this section, we want to use the BMI algorithm based on total firing to 
create the closed loop interaction between the external device (reaching the target region) and the S1-
M1 network model.  

   As described, the motor interface decodes the recovered responses from the M1 model to the 
propulsive force of the external device, and the sensory interface encodes the new position of the 
external device to the stimulus applied to the S1 model. In this section, the online information exchange 
between S1-M1 network model and external device through the BMI algorithm is reported.  

   We test the BMI algorithm 16 times with 16 different starting points on the sensory plane. The external 
device is guided from the initial point x0 to the target area (white circle in Figure 9) using the proposed 
BMI algorithm with the calibrated sensory interface of Figure 8. 

 

 

 

 

 

 

  

 

 

   The left panel of Figure 9 shows the trajectories (denoted external device) of the system for the 4-box 
S1-M1 network model, starting from 16 different initial positions. The colored lines and black lines 
denoted trajectories generated by closed loop BMI algorithm and ideal trajectories, respectively. Also, 
the right panel of Fig.9 indicates the step by step trajectories movement in the closed loop interaction 
between external device and S1-M1 network model. As it is evident, the BMI algorithm has succeeded in 
controlling the movement of the mechanical arm towards the target area. The simulation results 
presented in Figure 9 have been repeated 10 times to show the robustness of the algorithm, and the 
results confirm the robustness of the closed loop BMI protocol. In order to quantify the performance 
accuracy of the algorithm in guiding the mechanical arm towards the target area, we introduced a 

Figure 9. Performance of the on line BMI algorithms by using the total firing rate algorithm for 4-box model of S1-
M1 network. 
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criterion called Within-trajectory position error (WTPE) which calculates the distance between ideal and 
actual trajectories in the left panel of Figure 9. The WTPE parameter is obtained 4.2958 for 10 repetitions 
of BMI algorithm. Also, the average number of steps in reaching trajectories to the target region in 10 
iterations of the algorithm is 26, which indicates the good performance of the closed loop BMI algorithm.  

5. Conclusion  

   In recent years, the development of BMI algorithms to help people with neurological deficits has been 
highly considered. In the closed-loop BMI system (bidirectional BMI), control a mechanical device and 
constructing artificial sensory information about the position of an external device are based on the 
recording neural signal from the motor areas and electrical stimulation of sensory areas, respectively. In 
general, to implement a closed-loop BMI system in a portion of the nervous system, an encoding, and 
decoding algorithm can be implemented by micro-stimulation techniques and neural activity recording, 
respectively. In this regard, we designed a bidirectional BMI by simultaneously controlling encoding and 
decoding interfaces. We modeled the primary somatosensory cortex (S1) and vibrissal motor cortex (M1) 
as a population of inhibitory interneurons and excitatory pyramidal neurons with AMPA and GABA 
synapses. Next, these two networks were connected to create the S1-M1 network model. Then, the BMI 
algorithm based on neural firing was proposed. Indeed, the motor interface part of these algorithms 
decoded the evoked activity of the recorded motor cortical neurons (M1 model) into a force vector 
applied to the point mass in a viscous medium. The sensory interface part encoded the position of the 
point mass into a stimulus delivered to the somatosensory cortex (S1 model). Finally, we presented the 
results of applying the total firing rate algorithm, from the computational point of view, on the simulation 
data recorded from M1 in response to electrical stimulation of S1. The simulation results illustrate the 
effectiveness of the proposed BMI algorithm.  

 
Reference: 
 

Carmena, J. M. (2013). Advances in neuroprosthetic learning and control. PLoS biology, 11(5), e1001561. 
Fries P, Reynolds JH, Rorie AE, deSimone R (2001) Modulation of oscillatory neuronal synchronization by selective 
visual attention. Science 291: 1560–1563.  

Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with 
irregular neuronal discharges. J Neurophysiol 94: 4344–4361.  

Gil Z, Amitai Y (1996) Properties of convergent thalamocortical and intracortical synaptic potentials in single 
neurons of neocortex. J Neurosci 16: 6567–6578.  

Kamondi A, Acsadi L, Wang XJ, Buszaki G (1998) Theta oscillations in somata and dendrites of hippocampal 
pyramidal cells in vivo: activity-dependent phaseprecession of action potentials. Hippocampus 8: 244–261.  

A New Brain-Machine Interface Algorithm 4 (2023) 1-17 16



                                                                                                                                                   Amiri et al. 

 

Li, W., Li, C., Xiang, Y., Ji, L., Hu, H., & Liu, Y. (2019). Study of the activation in sensorimotor cortex and topological 
properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: 
An EEG study. Brain research, 1722, 146338.  

Logothetis NK (2003) The underpinnings of the bold functional magnetic resonance imaging signal. J Neurosci 23: 
3963–3971.  

Mazzoni, A., Panzeri, S., Logothetis, N. K., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential 
spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol, 4(12), e1000239.  

Vato A, Semprini M, Maggiolini E, Szymanski FD, Fadiga L, et al. (2012) Shaping the dynamics of a bidirectional 
neural interface. PLoS Comput Biol 8: e1002578  

Jackson, A., & Fetz, E. E. (2011). Interfacing with the computational brain.Neural Systems and Rehabilitation 
Engineering, IEEE Transactions on, 19(5), 534-541.  

Moritz, C. T., Perlmutter, S. I., & Fetz, E. E. (2008). Direct control of paralysed muscles by cortical neurons. Nature, 
456(7222), 639-642.  

Mussa-Ivaldi, F. A., Alford, S. T., Chiappalone, M., Fadiga, L., Karniel, A., Kositsky, M., ... & Vato, A. (2010). New 
perspectives on the dialogue between brains and machines. Frontiers in neuroscience, 4.  

Vato, A., Szymanski, F. D., Semprini, M., Mussa-Ivaldi, F. A., & Panzeri, S. (2014). A bidirectional brain-machine 
interface algorithm that approximates arbitrary force-fields. PloS one, 9(3), e91677.  

Tiwari, N., Edla, D. R., Dodia, S., & Bablani, A. (2018). Brain computer interface: A comprehensive survey. Biologically 
inspired cognitive architectures, 26, 118-129.  

 

 

 
 

17


