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Abstract 
Learning can be seen as a process of obtaining stable brain information that shows itself in 
thought, experiences, or behavior, and there is local memory for storing and retrieving 
information. In a nutshell, learning is a process that defines its output, memory. In this study, the 
behavior of learning and memory of ray was investigated along with dynamic analysis of signals. 
In this study, to create learning and memory processes, the Rey Auditory Verbal Learning Test 
(RAVLT) is used. In this study, 65 men and women with age range of 19-28 years and right hand 
have been used that 15 words in each stage are repeated for the subject and in each step, one 
needs to repeat it and repeat the EEG signals during these eight stages and before and after these 
stages in non-task relaxation conditions and 5 sub-frequency bands are analyzed. The statistical 
multivariate model demonstrates a correlation between behavioral learning rate (RAVLT) and 
three key parameters: the Hurst exponent, Higuchi fractal dimension, and approximate entropy 
of brain signals. The regression model highlights that the most significant predictor of learning 
and memory formation is the Higuchi fractal dimension of the signals, achieving an accuracy of 
78.33% in predicting the learning rate. A second multivariate model, designed to estimate the 
behavioral learning rate based on the fractal dimensions of the sub-bands, achieves an accuracy 
of 73.27%. In this second model, the delta and theta frequency sub-bands exhibit the greatest 
effect size and the largest coefficients for predicting the learning rate. The study of this research 
shows that learning enhancement and synchronization process simultaneously reduces the 
entropy of approximation and the fractal analysis followed by Higuchi model which is the result 
of organizing the brain in information processing. 
Keywords: Statistical Modeling, Learning and Memory Processes, Ray Auditory Verbal Learning 
Test (RAVLT), Higuchi Fractal Dimension 
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1. Introduction 
Learning can be defined as a process of acquiring stable information in the brain, which manifests 
in thoughts, experiences, or behaviors, with memory serving as a repository for storing and 
retrieving this information. In summary, learning is a process whose outcome is defined as 
memory. This process, which leads to memory formation, begins with the intake of information. 
The information is then encoded in the brain, followed by consolidation, storage, and finally, 
retrieval in its last stage (Amina & Malikb, 2019). 

These stages induce dynamic changes in the brain, which, due to the complexity of brain 
functions, pose significant challenges for researchers. Consequently, the brain is now often 
regarded as a complex, scale-free network. Moreover, this network exhibits fractal 
characteristics, making a static model insufficient for accurately representing brain behavior. This 
study aims to develop and propose a dynamic model tailored to the nature of learning, while also 
enabling the quantification of learning levels through brain signals. In conventional methods, 
learning is assessed behaviorally, typically through the completion of evaluation questionnaires 
(Dubinsky & Hamid, 2024). In this study, the Rey Auditory Verbal Learning Test (RAVLT) was 
employed alongside the dynamic analysis of signals. The RAVLT is a powerful and standardized 
method often used in neuropsychological sciences for comprehensive memory evaluation. It 
assesses a wide range of functions, including short-term auditory-verbal memory, learning rate, 
learning strategies, word recall at each stage of the test, learning curve registration, and the 
overall learning capacity of individuals. Furthermore, the RAVLT enables the evaluation of various 
memory abilities, such as immediate memory formation, delayed memory, forgetting rate, 
learning capacity, retrieval, and the interference effects of prior learning on new learning 
(proactive interference) as well as the impact of new learning on previous memory (retroactive 
interference). In this study, the Persian version of the RAVLT was utilized (Amina & Malikb, 2019; 
Arab et al., 2022). 

Learning and memory are among the most fundamental mental processes, representing 
critical features of human intelligence. Most cognitive functions depend heavily on these two 
core processes (Arab et al., 2022). Additionally, learning and memory are deeply interconnected 
phenomena, allowing living organisms to acquire new knowledge about the world, retain it, and 
thereby shape their personality and relationships with the external environment(Amin & Malik, 
2014; Antonis, 2023). 

Some studies have attempted to define learning and memory as distinct processes. In 
these frameworks, the first stage involves acquiring and storing information in memory, the 
second focuses on maintaining and preserving this information over time, and the third stage 
involves retrieving and extracting the stored information when needed. Traditionally, the term 
"learning" has been associated with experimental operations emphasizing the first stage, 
whereas "memory" pertains to events occurring in the second and third Methods used to 
examine learning processes and memory formation so far have often relied on event-related 
potentials of the brain. These involve presenting task patterns to participants momentarily within 
a few hundred milliseconds on a monitor, ultimately leading to the formation of visual memories 
in the brain. In another study, non-semantic stimuli (e.g., music playback) were provided to 
participants, and their impact on signal behavior was analyze (Brem et al., 2013). One of the 
emerging approaches for estimating complexity and memory in time series is the use of the Hurst 
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exponent. Since long-term memory establishes dependencies between current and prior 
information, this parameter can be utilized to predict the memory capacity of brain signals 
(Baddeley, 2006; Brem et al., 2013). 

Brain activity can be tracked using various neuroimaging techniques. Among these, 
electroencephalogram (EEG) provides excellent temporal resolution but poses significant 
challenges in understanding brain mechanisms due to the complex nature of brain functioning. 
This complexity extends to a scale-free behavior, as brain activities lack dominant temporal scales 
(Amina & Malikb, 2019; Antonis, 2023; Baddeley, 2006; Crowder, 2014), making EEG potentially 
more suitable for studying such mechanisms. EEG maps primarily illustrate cortical neural activity 
over time (Amin & Malik, 2014). EEG signals provide insights into brain states, adhere to a power-
law distribution, and correspond to signal amplitudes across various frequencies. The power 
spectral density of EEG tends to decrease as the oscillatory frequency increases (Arab et al., 2022; 
Ceglarek et al., 2021; Ko et al., 2017).  

One of the tools available for examining scale-free behavior is fractal analysis, which 
provides numerical descriptions of many natural phenomena (Amin & Malik, 2014; Feng et al., 
2020; Wang et al., 2019). The concept of fractal patterns in EEG signals can manifest as variations 
in probability distribution functions, a slow decline in autocorrelation functions, or the presence 
of 1/f power spectra. Such statistical dependencies can be observed as either long-term and 
short-term correlations or as local and global similarities (Mitchell & Borasio, 2007). It has been 
shown that long-term correlations define memory within a time series. In this context, the Hurst 
exponent is widely used in fractal theory to measure long-term dependencies or the formation 
of memory in a time series (Basar, 2004; Birbaumer & Cohen, 2007; Kaufmann et al., 2014; 
Mitchell & Borasio, 2007; Ricci et al., 2012). 

A cross-sectional analysis of EEG signals recorded during auditory stimulation has 
demonstrated that an increase in auditory memory formation is accompanied by an increase in 
memory formation in brain signals, as measured by the Hurst exponent (Basar, 2004). However, 
this finding was observed only during the sensory stage of learning and may not extend to long-
term memory (LTM). This research aims to explore the mechanisms of LTM formation and models 
this process through an analysis of the Hurst exponent (Arab et al., 2022; Basar, 2004). 

It has been shown that training can alter the structure and functions of the brain (Arab et 
al., 2022; Feng et al., 2020). These changes result from a learning process aimed at absorbing 
relevant information and shaping its representation. This phenomenon can be observed in brain 
activity across various levels of influence (Feng et al., 2020). For instance, changes in the power 
spectrum distribution of EEG signals and functional connectivity have been reported during 
semantic formation. Additionally, it has been demonstrated that the absolute and relative power 
of EEG frequency bands vary at different stages of learning (Feng et al., 2020). Other studies have 
proposed a generalized learning process based on newly self-organized memory models without 
evaluating neural responses, such as brain signals (Amin & Malik, 2014; Bongers et al., 2020). 
Additionally, event-related potentials (ERPs) have been used to assess working memory (Loftus 
& Loftus, 2019). 

Modeling learning and its dynamics in the human brain has proven to be highly 
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challenging due to the complexity of neuronal interactions and diagnostic methods. 
Consequently, linear analyses have been largely ineffective in addressing this issue. To examine 
these complexities and the effects of learning and memory formation in the brain, nonlinear 
methods are employed (Ceglarek et al., 2021). 

The examination of learning through brain signal processing in previous studies has been 
limited to the sensory stage (Amina & Malikb, 2019), during which information entering through 
auditory and visual senses is briefly stored in sensory memory without any processing. At this 
stage, the contents of brain signals are measured without influencing working memory (Amina & 
Malikb, 2019). 

None of the previous studies have addressed the creation of long-term memory. The 
advantage of the learning assessment test used in this study compared to earlier research lies in 
the meaningful nature of the input information, which impacts semantic memory. Additionally, 
the test is not dependent on momentary events; rather, the information is presented 
continuously. Through repetition and practice over eight stages, it enhances the consolidation 
and encoding of information, enabling individuals to achieve mastery during recall. The outcome 
of this process facilitates the transfer of information into long-term memory. While previous 
research has primarily focused on short-term memory, this study introduces a novel model for 
the dynamic functioning of brain signals. Additionally, another model has been proposed to 
examine the role of frequency sub-bands during the learning stages. 

EEG has been widely used to study brain behavior in various cognitive tasks such as 
learning, working memory, short-term and long-term memory (Maye et al., 2011), decision-
making, intelligence tests (Davis et al., 2011), and mental problem-solving tasks (Davis et al., 
2011; Wang et al., 2019). Changes in EEG measurements and features are closely associated with 
these cognitive activities (Wang et al., 2019). Spectral analysis of EEG and source estimation are 
employed to assess neural changes during different mental tasks (Michel & Brunet, 2019). 

The effects of skill development resulting from the repetition of specific tasks in brain 
regions have also been studied using fMRI scanners (Kaufmann et al., 2014; Michel & Brunet, 
2019). These results were examined through imaging under novice (processing) and expert 
(automatic) conditions. Another study investigated the level of visual learning in individuals with 
cognitive performance impairments. Additionally, in some articles, working memory 
performance has been analyzed using event-related signals in conjunction with visual tasks 
(Birbaumer & Cohen, 2007). The limitations of previous studies include: 

1. Investigating learning in healthy individuals only in a sensory context, without 
considering semantic understanding. 

2. The lack of analysis of learning dynamics in the brain resulting from memory 
formation. 

3. The unclear quantification of memory content generated through learning. 

The aim of this study is to statistically model the dynamics of learning using nonlinear 
analyses, leveraging a wide range of mathematical tools to achieve more comprehensive and 
accurate results. Here, we seek to take a broad perspective on the changes and organization of 
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continuous activity throughout the learning process and memory formation. To achieve this, we 
utilized the RAVLT framework for evaluating learning and memory processes. The RAVLT 
behavioral learning paradigm, which is capable of testing a wide range of learning and memory 
indicators, was employed alongside signal data, with the timing of their recording synchronized 
with behavioral stages. A multivariate statistical modeling approach was employed to determine 
the behavioral learning rate in RAVLT, using the Higuchi fractal dimension of EEG signals and the 
frequency sub-bands of brain signals. 

The RAVLT evaluation framework, commonly used in rehabilitation centers, offers the 
ability to assess auditory-verbal learning and memory, analyze the learning rate, plot the learning 
curve at each test stage, and ultimately provide an overall index of learning ability (Skeel & 
Edwards, 2011).  

In this study, participants underwent a word repetition test involving meaningful and 
independent words to assess their auditory memory. During the test phases, the participants' 
brain signals were recorded with relatively adequate spatial resolution. The number of words 
recalled by each participant was used to determine, based on a predefined formula, whether 
learning had occurred and to evaluate the auditory memory span for word learning using a curve 
analysis. 

Standardized RAVLT assessments were conducted verbally, with a series of words 
presented to participants in five stages (Ricci et al., 2012). Brain signals were recorded during 
these stages as well as before the task, under resting conditions and with minimal external 
stimulation. The signals, following precise preprocessing and segmentation, were analyzed using 
nonlinear methods, including the Hurst exponent (for measuring memory capacity) and fractal 
dimension (for assessing complexity) across all learning stages. The relationship between these 
metrics and the number of words learned by each participant, as well as the correlation between 
changes in the Hurst exponent and fractal dimension, was examined. The statistical significance 
of these changes was determined through appropriate statistical analyses (Gneiting & Schlather, 
2004). 

The modeling and quantification of changes in brain signals or images, along with their 
results, primarily focus on the processes of encoding and recall, aligned with memory formation 
in subjects. The timing of information is typically limited to before and after learning, with 
minimal data available on events during the learning process. 

In all techniques, brain potentials are recorded during momentary event-related tasks, 
such as n-back and Sternberg tasks. These tasks are generally devoid of semantic content and are 
primarily centered on working memory activities presented to the subjects (Geake, 2009). 

In another part of this research, the dynamics of brain networks were analyzed by 
examining brain graphs generated from cognitive tasks and their parameters. These 
characteristics were compared with well-known models such as Watts–Strogatz (WS), Barabási–
Albert (BA), and Erdős–Rényi (ER) (Basar, 2004; Bullmore & Bassett, 2011; Geake, 2009). 

Structural changes resulting from motor skill learning represent another area of learning 
studies. This line of research has been facilitated by advancements in non-invasive thermal 
imaging technologies, such as diffusion tensor imaging (DTI), and the introduction of graph 
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theory. These approaches primarily enable the investigation of changes in white matter, gray 
matter, and brain plasticity in target groups within neural connectivity patterns. However, only a 
limited number of studies have focused on the topological features of brain networks related to 
motor skill learning, particularly free-form skills. Due to the complexity of processes involved in 
certain motor skills, such as learning to paint or sculpt, no research has yet been conducted in 
these areas (Bongers et al., 2020; Bullmore & Bassett, 2011). Learning and investigating the 
processes of memory formation, despite extensive research in recent years, remain among the 
critical and complex issues studied in functional cognitive research (Amina & Malikb, 2019). 

One of the significant learning models closely aligned with the method of this study is the 
model proposed by Atkinson and Shiffrin. As illustrated in Figure (1), this model describes the 
processes within a multi-store memory structure. It assumes the existence of three distinct and 
independent types of memory, with information transferring between these stores in a linear 
sequence. The three primary storage locations include sensory memory, short-term memory 
(STM), and long-term memory (LTM). 

The initial stage involves information processing, which begins when external stimuli are 
received by the senses. As depicted in Figure (1), the retention time for information in sensory 
memory ranges from a few milliseconds to a few seconds. Sensory memory exists for each 
sensory channel: iconic memory for visual stimuli, echoic memory for auditory stimuli, and 
haptic memory for tactile sensations. Sensory memory is a fundamental component of the 
perception process. The capacity of sensory memory is very large, though not unlimited like long-
term memory. It is known that some memories last only a few seconds, while others endure for 
hours, days, months, or even years. Sensory stores are constantly receiving information; 
however, most of this information is disregarded and remains in sensory memory for only a very 
short duration. In sensory memory, information is derived from the five senses, such as vision 
(visual information), sound, and touch. Sensory memory has a high capacity but a brief duration, 
enabling it to encode information from each sense. Most of this information is lost due to decay 
(Amin & Malik, 2014; Amina & Malikb, 2019; Benedek & Fink, 2019). 

Attention is the first step in remembering something. If an individual focuses their 
attention on one of the sensory stores, the data is transferred to short-term memory, also known 
as working memory. To elaborate, the common classification of memory divides it into the 
following types: 

1. Short-term memory (STM): Includes memories that last for a few seconds or, at 
most, a few minutes unless they are consolidated into long-term memory. 

2. Medium-term memory: Persists for days or weeks but is eventually lost. 
3. Long-term memory (LTM): After consolidation, this type of memory can last for 

years or even a lifetime (Baars & Gage, 2010; Benedek & Fink, 2019; Loftus & Loftus, 2019). 

After classifying memory based on this framework and defining the concepts of each type, 
we will now examine them in greater detail, focusing on the neuronal changes that occur within 
the nervous system during the formation of each type of memory. 
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Figure 1 The Atkinson and Shiffrin Multi-Store Memory Model. 

One of the most significant models of learning and memory interaction is the Atkinson 
and Shiffrin model. In this framework, information enters the sensory buffer through the five 
senses. Given the brief lifespan of this information, lasting only a few seconds, most of it is lost. 
However, if attention is directed toward or a specific stimulus is selected—typically visual or 
auditory—the information is transferred to short-term memory (STM) (Cowan, 2005). 

Some researchers argue that this is essentially working memory, which actively processes 
and manipulates incoming information while linking it to previously stored data in the brain(Aben 
et al., 2012; Cowan, 2005). With repetition and practice, this information is transferred to long-
term memory, where it can persist for days, years, or even a lifetime. 

The memory process involves three main components: encoding of incoming information, 
consolidation and maintenance, and finally, retrieval. Repeated execution of these three stages 
increases the likelihood of information being retained in the brain, ultimately leading to the 
formation of semantic memory (memory for facts and concepts) and episodic memory (memory 
for personal experiences) (Arab et al., 2022). 

The limitations of previous studies include the lack of exploration into semantic learning 
and memory formation in the brain, as well as the dynamic activities and impacts of created 
memory content. These changes have been validated in this study through behavioral auditory-
verbal learning tests (RAVLT) conducted on participants. 

In contrast to earlier studies, this research demonstrates that information passes through 
the sensory memory channel and, due to extensive rehearsal and repetition, undergoes 
significant encoding, consolidation, and retrieval. Ultimately, this process transforms the input 
into relatively stable auditory-verbal memory(Fard et al., 2016). 

In this study, we utilized nonlinear fractal analysis to specifically calculate the Higuchi 
fractal dimension (HFD) of EEG signals and their frequency sub-bands (γ, β, α, θ, δ). The range of 
HFD values varied across the sub-bands, but the average HFD demonstrated a decreasing trend 
as memory levels increased in the cerebral cortex. This reduction in HFD indicates a decrease in 
randomness or complexity of the signals, a finding further confirmed by approximate entropy 
measurements (Arab et al., 2022). 
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Alongside changes in the fractal dimension of the sub-bands, the average relative power 
of these sub-bands was also analyzed. This measure showed an increasing trend across all 
frequency bands, except for the alpha band, which exhibited a decreasing trend. Additionally, 
the theta frequency band was identified as having the most active dynamics in enhancing the 
learning rate and memory formation, aligning with findings from previous studies.  

The primary goal of these three stages is to assess the dynamics of learning and memory 
processes facilitated by auditory memory. This involves recording the subject's signals during 
learning and analyzing the impact of increased memory content using nonlinear analyses and the 
relative power of frequency sub-bands. Additionally, the study evaluates the recall of provided 
information through the RAVLT behavioral test and maps the fractal dimension distribution and 
changes in the relative power of frequency sub-bands associated with the learning stages. 

 

2. Methods 

2.1.   Dataset 

In this study, considering the temporal and spatial scope of the research, the statistical 
population consisted of male and female undergraduate students from the Electrical Engineering 
Faculty of Arak University of Technology. All participants were actively pursuing their bachelor's 
degrees at this institution and ranged in age from 19 to 28 years. 

Due to the limited population size and the quasi-experimental nature of the study, a total 
of 65 subjects (43 males and 22 females) were selected as the statistical sample. Given that 
various factors can influence auditory-verbal memory performance, relevant information was 
collected from participants before conducting the interviews. This information included: 

1- No history of medical conditions or any illnesses affecting cognitive health, including: 
chronic neurological disorders, cerebrovascular issues, brain tumors, strokes, head 
trauma, brain inflammation, Alzheimer's, epilepsy, Parkinson's disease, schizophrenia, 
AIDS, meningitis, intellectual disabilities, psychological or psychiatric issues, history of 
substance abuse or addiction to drugs and alcohol, use of psychiatric medications, sleep 
disorders, or hearing and speech impairments. 

2- Monolingual, with proficiency in Persian as a native language. 

It is important to mention that the test participants predominantly used their right hand for 
writing. 

The level of anxiety, depression, and emotion in the study participants was measured 
using the DASS 42 questionnaire. The DASS 42 scale is capable of diagnosing and screening 
symptoms of anxiety, depression, and stress over the past week. This scale is intended for use 
with adults and has appropriate validity for application in research and diagnostic activities. 

Although this test is capable of screening and diagnosing during adolescence, it is 
recommended for use with individuals over 15 years of age. Before recording brain signals, this 
questionnaire is completed as a self-assessment by the subject, and the score is determined 
based on the specified criteria. If the score from the 42 questions of the questionnaire, which 
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assess anxiety, depression, and stress, is lower than the normal and expected range, the 
individual will be excluded from the list of participants in the experiment (Benedek & Fink, 2019; 
Fard et al., 2016; Leahey). 

The Rey Auditory Verbal Learning Test (RAVLT), adapted from the Persian version, was 
administered to participants. The examiner presented two distinct lists of 15 unrelated yet 
semantically meaningful words (Lists A and B). List A words were delivered at a rate of one word 
per second. Participants were instructed to recall as many words as possible from List A until they 
could no longer remember additional items. This procedure was repeated five times to assess 
the impact of repetition on stimulus encoding and learning capacity. Subsequently, List B was 
presented once under identical conditions. Immediately following the presentation of List B, 
without any intervening cues, participants were asked to recall words from List A. A 30-minute 
delay period was introduced, after which participants were again prompted to recall words from 
List A to evaluate long-term retention. 

Table 1 RAVLT test implementation steps related to one of the subjects 

Recall of 
Words from 
the First List 

Recall of Words 
from the Second 

List 
Recall of Words from the First List 

No 

Stage 
8 

Stage 
7 

Stage 6 
Second 

List 
Stage 

5 
Stage 

4 
Stage 

3 
Stage 

2 
Stage 

1 
First 
List 

 √  √  √ book  √  √  √  √  √ bowl 1 

 √  √  √ flower  √  √  √  √  √ dawn 2 

 √  √  √ train  √  √  √  √  √ judge 3 

 √  √  √ carpet  √  √  √  √  gift 4 

 √  √  √ forest  √  √  √   insect 5 

 √  √  √ song  √  √  √  √  plain 6 

 √  √  salt  √   √  √  country 7 

 √  √  finger  √  √  √   pool 8 

 √  √  √ apple  √  √  √  √  √ grain 9 

 √  √  √ heater  √  √  √  √  sheep 10 

 √   button  √  √  √   food 11 

 √  √  tree  √  √  √  √  √ coat 12 

 √  √  √ key  √  √    bottle 13 

 √  √  √ camel  √  √  √  √  √ beach 14 



Nonlinear brain signal processing to model learning…6(1) (2025)61-91                                          72 

 √  √  √ gold  √  √  √  √  √ chair 15 

15 14 11  15 14 14 11 7 
Number of 

Words 
Recalled 

 

In the RAVLT learning and memory consolidation test, if the result of the following 
equation (1) yields a positive LOT value, it indicates high activity and dynamics of working 
memory. In this case, due to the repetition of words, information is transferred to long-term 
memory (LTM) according to the Atkinson and Shiffrin multi-store model, due to encoding and 
recall processes. As a result, the individual will retain the ability to recall words for some time 
after the test(Daryadar & Raghibi, 2015). 

LOT = LT − (5 ∗ WS1)                           (1) 

WS1: Number of words recalled in the first stage of the test 
LT : Total number of words recalled across all 5 stages of the test 
LOT : Total learning rate 

As observed in these stages of word presentation for the participant, in the sixth stage 
(trial 6), list "B" with 15 new words is presented to the participant. The effects of previous 
memory on the participant cause interference and a decline in the upward learning trend, which 
is why this stage is referred to as the interference stage. The curve of the recalled words one of 
the subjects is shown in Figure (2). 

 

 

 

 

 

 

Figure 2 Graph of the number of words recalled by a participant during the stages of the RAVLT. 
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2.2.  EEG Signal Recording 

EEG signals were recorded from 32 channels based on the 10-20 system, with channel 32 
connected to the lower right eye for recording Electro Ocular Ophatalmography (EOG) signals. 
Efforts were made to ensure the recording environment was free of external stimuli (e.g., sound, 
50 Hz urban noise) that could degrade signal quality. The maximum impedance between the scalp 
and the recording electrodes was maintained below 10k Ω. 

The EXG devices used, manufactured by the knowledge-based company Parto Danesh, 
feature a 1 kHz sampling frequency and a 24-bit analog-to-digital converter. These devices are 
capable of recording a variety of bio-signals (EEG, ECG, EOG, EMG, ECoG, etc.). The reference and 
ground electrodes were placed on the mastoid bone behind the ears to minimize artifacts. 

EEG signals from participants were recorded in 10 stages, with each stage lasting 100 
seconds. These stages included: 

1. Resting state before the AVLT test (rest1). 

2. Eight stages during the AVLT test (trial1...trial8). 

3. Resting state after the AVLT test (rest2). 

The workflow of these stages is illustrated in the block diagram in Figure (3). 

Given the influence of anxiety, stress, and emotional states on learning and memory 
formation, all subjects were evaluated using the DASS42 (Depression, Anxiety, and Stress Scale ( 
Sulak & Koklu, 2024). Only those who achieved a normal threshold score on this test were eligible 
to proceed with the auditory-verbal learning test (RAVLT). 

This test, through the repetition and rehearsal of input information as outlined in the 
Atkinson and Shiffrin model, also facilitates the transfer of information to medium-term memory 
(Alsaeed, 2017; Sulak & Koklu, 2024). 

a) Pre-learning (rest1) and post-learning (rest2) stages: Signals were recorded under 
closed-eye and open-eye conditions for 3 minutes each. These stages were conducted before and 
after the memory and learning tasks, which involved the execution of the RAVLT. 

b) During the RAVLT execution: EEG signals were recorded during 8 stages (trial1...trial8) based 
on the relevant instructions, with each recording lasting 120 seconds. 

This procedure encompasses the pre-test resting stage (rest1), the 8 learning stages 
during the behavioral RAVLT test, and the post-test resting stage (rest2). A graphical summary of 
these study stages is illustrated in Figure (3). 
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Figure 3 Graphical Summary of the Study Stages 

2.3.  EEG Signal Preprocessing Steps 

1. Bandpass Filtering: A 4th-order Butterworth bandpass filter was applied to all signals, with a 
frequency range of 1–48 Hz. 

2.  Artifact Removal Using ICA: The EEGLAB toolbox was used to implement the Infomax 
Independent Component Analysis (ICA) algorithm to eliminate complex artifacts such as ocular 
and muscular artifacts. 

3. Channel Removal and Interpolation: Channels that could not be artifact-corrected using the 
above method were removed. Although the number of such channels was very limited, channels 
with a statistical kurtosis value exceeding 5 were flagged as bad and excluded. Subsequently, the 
removed channels were reconstructed using spherical interpolation. The affected channel c(t) 
was recalculated based on neighboring channels c1 and c2 using Equation (2). 

𝑐(𝑡) =
sin (1 − 𝑡)

𝑠𝑖𝑛𝜃
𝑐1 +  

sin (𝑡)𝜃

𝑠𝑖𝑛𝜃
𝑐2        cosθ = 𝑐1. 𝑐2                (2) 

4.  The first 60 seconds of the signals, equivalent to 60,000 samples, corresponding to the time 
of the RAVLT test execution, were selected. The initial 15 seconds of this signal relate to 
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information input, encoding, and stabilization through auditory and verbal memory, while the 
remaining time corresponds to the recall of words by the participant. 

5. To extract sub-frequency bands, the wavelet packet algorithm was employed in 7 
decomposition stages, as illustrated in Figure (4). Due to the smoothing characteristics of the db4 
wavelet and its extensive use in processing vital signals, this wavelet was applied in this study 
(Alsaeed, 2017; Brown et al., 1994; Miller, 2020). The coefficients obtained from the 7-level 
decomposition through the wavelet packet algorithm are structured as follows: 

• For the beta band (12–32 Hz), two wavelet packet coefficients, N (5,1) and N (7,3), are 
required for reconstruction. 

• For all other sub-bands, a single wavelet packet coefficient suffices for reconstruction. 

• These coefficients were also employed during the calculation of the spectral energy of 
the sub-bands for signal processing. 

 

Figure  4  Stages of EEG decomposition using the wavelet packet method for extracting the sub-
frequency bands Delta, Theta, Alpha, Beta, and Gamma. 

 

 

2.4. EEG Signal Data Extraction 

Brain signals were recorded across 31 channels for each participant during 10 experimental 
stages: rest1, trial1, trial2, trial3, trial4, trial5, trial6, trial7, trial8, and rest2. The rest1 signal 
represents the relaxation state before learning and memory formation, while rest2 reflects the 
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relaxation state after learning and memory creation. The signals from trial1 to trial8 correspond 
to the execution of the RAVLT task. Measurements of the Hurst exponent, Higuchi fractal 
dimension, approximate entropy, and sub-frequency bands (Delta, Theta, Alpha, Beta, and 
Gamma) were calculated for these signals using the methods detailed later in this article. 

 2.5. Higuchi Fractal Dimension: 

One of the modern approaches for estimating complexity and exploring scale-free spaces in time 
series is fractal analysis. The Higuchi method for estimating the fractal dimension has gained 
significant attention from researchers due to its high accuracy and widespread application in EEG 
signal analysis, outperforming other methods such as box counting and Katz. However, it is more 
sensitive to noise compared to other fractal dimension estimation techniques (Wanliss & 
Wanliss, 2022). 

2.6.  Primary Processing of EEG Signals: 

The primary signal analysis was conducted using MATLAB 2017 and SPSS software. This included 
estimating the Higuchi fractal dimension, the Hurst exponent, the approximate entropy of 
signals, and the relative power of sub-frequency bands (Equation 3). The statistical significance 
of these changes was validated using one-way ANOVA tests and the Bonferroni correction 
criterion. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 =
𝑃𝑠𝑢𝑏 𝑏𝑎𝑛𝑑

𝑃𝑡𝑜𝑡𝑙𝑎 𝑏𝑎𝑛𝑑𝑠
        (3) 

In the Higuchi fractal dimension calculation method, a new series is constructed from the 
input data series 𝑥(1), 𝑥(2), … , 𝑥(𝑁) as follows: For m=1,2, 3 , ... , k. 

                𝑥𝑚
𝑘 = {𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘), … … , 𝑥 (𝑚 + ⌊

𝑁−𝑚

𝑘
⌋ 𝑘)}          (4) 

Here, m represents the starting point of each series, and ⌊ ⌋ represents the integer part of 
a number. For each 𝑥𝑚

𝑘   the length 𝐿𝑚(𝑘) is calculated as: 

𝐿𝑚(𝑘) =
∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|

⌊
𝑁−𝑚

𝑘
⌋

𝑖=1

⌊
𝑁 − 𝑚

𝑘
⌋ 𝑘

    𝑁 − 1
𝑘⁄                (5) 

Here, N represents the total number of samples, and the normalization factor referenced 
in Equation (4) ensures consistency. For each value of k, the corresponding lengths 𝐿𝑚(𝑘) are 
computed, and their average is taken as the mean length. This process is repeated up to 𝑘𝑚𝑎𝑥   . 
The Higuchi fractal dimension is then determined as the slope of the best-fit line, approximated 
using the least squares method, for log (𝐿(𝑘)) versus log (𝑘)  (Vega & Noel, 2015). 

In the calculation of the Higuchi fractal dimension, 𝑘𝑚𝑎𝑥 = 70    is chosen, representing 
the maximum fractal dimension values within this time window. Beyond this point, the fractal 
dimension effectively stabilizes. 

The fractal dimension and the Hurst exponent are related by the linear formula given in 
Equation (6):  
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D = 2 − H                                 (6) 

Here, D represents the fractal dimension, and H denotes the Hurst exponent. 

For a completely random time series, the fractal dimension D equals 1.5. The fractal 
dimension values of EEG signals decrease as the memory content in the EEG signals increases, 
due to the rise in the Hurst exponent values, as described by Equation (6) (Vega & Noel, 2015). 

3. Findings  
The results of the Rey Auditory Verbal Learning Test (RAVLT) behavioral assessment show the 
average total number of words recalled across all participants, as depicted in Figure (5). With the 
progression of learning stages, the learning rate, or the number of words recalled by participants, 
demonstrates an upward trend. In stage t6, when the second list is introduced, the average 
RAVLT results for both genders, as shown in Figure (6), indicate that verbal and auditory learning 
and memory consolidation occur under relatively similar conditions for both males and females. 

 

 

Figure 5  Results of the RAVLT behavioral assessment of learning and memory 
consolidation across 8 stages. 

 

                                                          
Figure 6 Learning and memory consolidation trends in the RAVLT test for males and females 

All three variables extracted from the signals are displayed in Figure (7). As shown in part 
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(a) of the figure, the Higuchi fractal dimension of the EEG signals across all participants exhibits a 
strongly decreasing trend, with only a slight increase observed in stage t6 due to the presentation 
of the second list and its interference with the learning from the previous five stages. 

In part (b), the changes in the Hurst exponent of the signals show an upward trend, 
indicating an increase in the memory capacity of the signals. Part (c) illustrates the changes in 
approximate entropy, confirming the findings of parts (a) and (b). It shows that a reduction in 
fractal dimension and an increase in the Hurst exponent correspond to a decline in random 
behavior. The decrease in approximate entropy, coupled with the increase in learning and 
memory consolidation rates, further supports this observation. 

 
Figure 7 Changes in information extracted from signals during learning and memory consolidation:(a) Box plot showing 

the decreasing trend of the Higuchi Fractal Dimension (HFD) of brain signals across all participants during the 10 stages of the 

RAVLT learning test. (b) Box plot depicting the increasing trend of the Hurst exponent of brain signals across all participants 

during the 10 stages of RAVLT learning and memory consolidation. (c) Decreasing trend of approximate entropy in brain signals 

during the learning and memory consolidation stages 

The one-way analysis of variance (ANOVA) table for the behavioral learning rate in the 
RAVLT test across 8 experimental stages. Table (2, 3, 4, 5) indicates that the changes in the 
Higuchi fractal dimension, Hurst exponent, and approximate entropy of the signals during the 10 
recording stages are statistically significant, with a p-value << 0.01 confirming these changes. 

 

Table 2  One-way analysis of variance (ANOVA) for the behavioral learning rate in the 
RAVLT test across 8 experimental stages. 

p-
value 

F M
S 

d
f 

SS Sour
ce 

0.0
000 

11
7.08 

39
5.94 

7 277
1.58 

Bet
ween 
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Table 3  One-way analysis of variance (ANOVA) for changes in the Higuchi fractal 
dimension across 10 experimental stages. 

 

 

 

 

 

Table 4  One-way analysis of variance (ANOVA) for changes in the Hurst exponent of 
signals across 10 experimental stages. 

 

 

 

 

Table 5  One-way analysis of variance (ANOVA) for changes in approximate entropy across 
10 experimental stages. 

p-
value 

F MS df SS Source 

0.0000 51.17 0.2625 9 2.36252 Between 

  0.00513 300 1.53907 Within  

   309 3.90159 Total 

p-
value 

F MS df SS Source 

0.0000 28.74 0.03389 9 0.30505 Between 

  0.00118 300 0.35378 Within  

   309 0.65883 Total 

p-
value 

F MS df SS Source 

0.0000 37.65 0.0000088 9 0.00079 Between 

  .00000023 300 0.0007 Within  
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To compare the effectiveness of the calculated variables, the effect size metric has been 
used. This statistic is calculated using the following equation: 

 

𝜔2 ≅
𝑆𝑆𝐵

𝑆𝑆𝑇
∗ 100                                                                           (7)  

ω2 represents the effect size, 𝑆𝑆𝐵 denotes the sum of squares between groups, and 𝑆𝑆𝑇 
refers to the total sum of squares, as introduced in Equation (8,9). μ represents the mean of each 
group, n is the total number of samples, k is the total number of groups, and l is the number of 
samples within each group. It is worth noting that these values can also be extracted from the 
first column of the one-way (ANOVA) table. 

𝑆𝑆𝑇 = ∑(𝑥𝑗 − 𝜇)2

𝑛

𝑗=1

                                                                (8) 

𝑆𝑆𝐵 = ∑ 𝑛𝑗(𝑥𝑗 − 𝜇)2

𝑘

𝑗=1

                                                          (9) 

 

The results obtained from the frequency sub-bands related to the calculation of the 
Higuchi Fractal Dimension, as shown in Figure (8), indicate a decreasing trend in this variable 
across all stages. This reflects the integration of different brain regions during the progression of 
learning. 

 

   309 0.00149 Total 
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Figure 8  The average Higuchi Fractal Dimension (HFD) across frequency bands from top 
to bottom, along with standard error: Delta, Theta, Alpha, Beta, and Gamma. 

In this study, to examine the correlation and relationship between variables, the variables 
were initially divided into two groups. The first group represents the dependent variable, which 
includes "WORD," referring to the number of words recalled in the RAVLT behavioral learning 
test. The second group consists of independent or predictor variables, including HURST as the 
Hurst exponent, HFD as the Higuchi Fractal Dimension, and ApEn as Approximate Entropy. The 
dependent variable, WORD, as defined in Equation (10), represents the mean difference in the 
number of words recalled during the RAVLT behavioral test across two stages, trial5 and trial1, 
as well as the subtraction of trial6 and the sum of trial8. This variable exhibits an upward trend 
across 65 subjects, with a decline observed during the sixth (interference) stage, followed by an 
increase in the eighth stage. The independent variables HFD, ApEn, and HURST were selected 
from the EEG recording channels that exhibited the most significant changes across all subjects. 
Using Equations (11), (12), and (13), the independent variables were defined and calculated for 
all subjects (65 samples). In Equation (11), the HURST variable demonstrates a positive trend, 
whereas in Equations (12) and (13), the ApEn and HFD variables show a negative and decreasing 
trend. All variables are defined with the subscript diff. The reason for using stages 1, 5, 6, and 8 
for the independent variables is their impact on the learning and memory formation process, as 
can be clearly observed in Figure (7). 

  

RAVLTtrial5 − RAVLTtrial1 + RAVLTtrial6 − RAVLTtrial8 = RAVLTdiff                                                   (10) 
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HURSTtrial5 − HURSTtrial1 + HURSTtrial6 − HURSTtrial8 = HURSTdiff                                                                    (11) 

ApEntrial5 − ApEntrial1 + ApEntrial6 − ApEntrial8 = ApEndiff                                                                                   (12) 

HFDtrial5 − HFDtrial1 + HFDtrial6 − HFDtrial8 = HFDdiff                                                                                            (13) 

3.1. Design of the Linear Regression Model 
Statistical modeling is an effective method for analyzing data and estimating the linear 
relationship between independent or predictor variables and the dependent variable. However, 
this relationship may not always be linear, potentially requiring curve fitting or polynomial 
modeling. In either case, the goal is to design a simple linear or curved model that passes through 
the majority of data points, minimizing the distance between the data points and the fitted line 
or regression error. To enhance the accuracy and efficiency of the model, in this study, the 
variables were calculated with high precision using advanced mathematical methods to establish 
the necessary relationships in the model appropriately. 

3.2. The statistical regression model for the Hurst exponent, Higuchi Fractal Dimension, and 
Approximate Entropy of EEG signals aims to estimate the behavioral learning rate (WORD). 
In this study, to examine the relationship between the dependent and independent variables, a 
scatter plot of these variables was created, as shown in Figure (9). 

                                                              

 

Figure 9  Scatter plot between the variables WORD (number of words recalled), HURST (Hurst 
exponent of the signals), HFD (Higuchi Fractal Dimension of the signals), and ApEn (Approximate 

Entropy of the signals). 

 

According to the summary model table (Table 6), the adjusted coefficient of 
determination is 0.704, the correlation coefficient is 0.846, and the coefficient of determination 
is 0.716. The capability of this regression model to statistically estimate the dependent variable 
(behavioral learning rate) based on the quantities extracted from the signals is satisfactory. The 
analysis of variance tables (Tables 2, 3, and 4), with p-value<<0.05, also confirm the adequacy of 
the designed model. 
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Table 6  Summary table of the model for the dependent variable WORD in relation to the 
independent variables HURST, HFD, and ApEn. 

 

To determine the regression model coefficients, the coefficient table in SPSS software 
was utilized, and the model is presented based on Equation (14). The calculated regression model 
demonstrates the relationship between the behavioral learning rate and the Hurst exponent, 
Higuchi Fractal Dimension, and Approximate Entropy. According to this model, the most 
significant independent variable is the Higuchi Fractal Dimension of the signals. In the final stage, 
to assess the regression model's error, an evaluation was conducted as outlined. The results of 
this evaluation indicate that the designed model can predict the behavioral learning rate with an 
accuracy of 78.33%. 

 

 𝑊𝑂𝑅𝐷 = 2878,486 − 45,845 ∗ 𝐻𝑈𝑅𝑆𝑇 − 2785,662 ∗ 𝐻𝐹𝐷 − 112,24             (14) 

The decreasing trend in the Higuchi Fractal Dimension (HFD) with the progression of 
learning stages—before learning (rest1) and during learning (trial1 to trial5)—across all 
frequency sub-bands   𝛾, 𝛽 , 𝛼 , 𝜃 , 𝛿 is clearly observed in Figure (8). However, in the seventh signal 
recording stage (t6), the frequency sub-bands exhibit a sudden upward change due to the 
introduction of the new word list "B" and its interference with current and previous memory 
formation. In stages t7 and t8, where the "A" word list is reintroduced, the trend is expected to 
return to its prior decreasing trajectory due to reliance on earlier memories, though the alpha 
and gamma sub-bands do not follow this pattern. 

The largest effect size of fractal dimension changes occurs in the lower frequency theta 
band at 70.78% and in the higher frequency beta band at 65.44%. Notably, across all sub-bands, 
the fractal dimension after learning (rest2) shows a decrease compared to the pre-learning stage 
(rest1). 

3.3. Regression Model for Frequency Sub-Bands to Predict Behavioral Learning Rate (Variable 
WORD) 

The human brain, as an example of a complex system, consists of components that play a crucial 
role in organizing cognitive behaviors. One of the most important elements enabling information 
processing in the brain across various temporal and spatial scales is the frequency sub-bands that 
constitute brain signals. In this study, one of the objectives of modeling brain behavior is to utilize 
these sub-bands in predicting the learning rates of subjects. 

As observed in the regression model (Equation 14), the most suitable variable (largest 

Model R R Square Adjusted R Square Std. Error of the 
Estimate 

1 .846a .716 .704 1.54301 
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coefficient in the model) for predicting the behavioral learning rate is the Higuchi Fractal 
Dimension. This measure was also utilized in this stage of statistical modeling within the 
frequency sub-bands.  

As in the previous stage, the condition for using parametric statistical tests (normal 
distribution), such as analysis of variance, paired t-tests, and curve fitting, is the normal 
distribution of the variable under study. The Kolmogorov-Smirnov test was used to evaluate the 
normality of the HFD variable across frequency sub-bands, and the results of this test, along with 
histograms of the variables. As shown in this table, the Higuchi Fractal Dimension across all 
frequency sub-bands has p-value>0.05, and the null hypothesis (𝐻0)is confirmed, indicating that 
the HFD variable follows a normal distribution in all sub-bands. 

The first step in examining the relationship between the variables is to use a scatter plot 
of the Higuchi Fractal Dimension of the frequency sub-bands (independent variable) against the 
number of words recalled (dependent variable), as shown in Figure (10). 

 

Figure 10  Scatter plot of the dependent variable WORD (number of words recalled) against the 
Higuchi Fractal Dimension of the frequency sub-bands: Delta, Theta, Alpha, Beta, and Gamma 

(independent variables). 

To define the fitting model between the response variable and other variables, which 
include all sub-bands with pvalue << 0.05 impacting the model, Equation (15) is used. Only the 
constant term does not meet the required conditions and is therefore not included in the 
regression model described by Equation (15). 

𝑊𝑂𝑅𝐷 = −330,212 ∗ 𝐷𝐸𝐿𝑇𝐴 − 349 ∗ 𝑇𝐸𝑇𝐴 − 19,81 ∗ 𝐴𝐿𝑃𝐻𝐴 − 146,42 ∗ 𝐵𝐸𝑇𝐴 − 91,55 ∗ 𝐺𝐴𝑀𝑀𝐴           (15) 

As observed in the regression model (Equation 15), the impact of each sub-band on the learning 
variable (WORD) is decreasing. This is attributed to the declining trend of the Higuchi Fractal 
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Dimension during the learning process. These changes align with previous studies  (Klonowski; 
Leahey; Soria-Frisch, 2004; Wixted & Thompson-Schill, 2018), confirming the significant role of the 
Theta band in successive cognitive processes, such as the RAVLT learning test, where the subject 
must follow a series of repeated words over multiple stages. Changes in the Beta band also have a 
substantial effect on recall during memory formation processes. 

The multiple statistical modeling in this study, as shown in Equation (14), demonstrates a 
significant linear relationship (correlation coefficient R=0.846) between the behavioral learning 
rate assessed in the RAVLT test and the nonlinear parameters of the Hurst exponent, Higuchi 
Fractal Dimension, and Approximate Entropy of the signals. As the subject focuses on recall and 
increases memory content, a simultaneous increase in memory and a decrease in entropy are 
observed in the brain signals. The contribution of the Higuchi Fractal Dimension (HFD) of brain 
signals in this model is clearly evident. The accuracy of this model, based on the model evaluation 
table, is 78.33%. 

In the second model developed in this study, the relationship between the Higuchi fractal 
dimension of sub-frequency bands as predictor variables and the behavioral learning rate was 
designed according to Equation (10). The correlation coefficient (R=0.865) in this statistical 
regression model indicates its strong efficiency, with an accuracy of 73.27%. This model predicts 
the RAVLT behavioral learning rate based on changes in the Higuchi fractal dimension of the sub-
frequency bands. 

The model clearly demonstrates the role of the theta band at low frequencies and the 
beta band at high frequencies. As observed in the memory processes (encoding, consolidation, 
and recall) in this study, the theta band shows the highest Higuchi fractal dimension during 
information recall, while the beta band exhibits the highest Higuchi fractal dimension during 
information encoding. These findings are consistent with previous research (Atkinson & Shiffrin, 
1968; Loftus & Loftus, 2019; Rahmani et al., 2018). 

The results of this study confirm the role of the theta band in synchronizing connections 
between brain regions and enhancing working memory activity for memory formation. Similarly, 
the beta band is shown to increase conscious performance and brain attention. 

3.4. Results of the Hurst Exponent and Fractal Dimension of Signals in Relation to the RAVLT Test 
This section examines the relationship between RAVLT behavioral learning and the mathematical 
index of the Hurst exponent in signals. As shown in part (a) of Figure (5), the values of the Hurst 
exponent increase with the rising number of words recalled by the participant. This positive 
correlation aligns with a previous study (Gottlieb, 2012), where the increase in memory signals was 
confirmed only for sensory memory over brief moments. This finding indicates that as memory 
formation processes intensify in the brain cortex, the Hurst exponent of the signals also rises, 
representing an increase in memory within the signals. In other words, what is evaluated 
behaviorally is also confirmed in brain signals. 

The relationship described in Equation (6), where the sum of the fractal dimension and 
the Hurst exponent equals a random variable with a value of 2, is validated in part (b) of Figure 
(11). A detailed analysis of the changes in signal indices, such as the Higuchi fractal dimension 
and the Hurst exponent at each stage of the learning process, is a key advantage of this study. It 
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enables more precise monitoring of learning dynamics. 

 

                                              

Figure 11 Relationship between variables extracted from signals: 
(a) Simultaneous changes in the average Higuchi fractal dimension with the increasing behavioral learning rate in RAVLT. (b) 

Correlation between changes in the fractal dimension (blue) and the Hurst exponent (red circles), approximating the relationship 
D=2−H. 

 

Discussion 

In the RAVLT behavioral test, the participants demonstrated two stages of performance during 
the memory formation process, as shown in Figure (12). The first stage, lasting 15 seconds, 
involved presenting the words to the participants, during which they were required only to listen. 
According to the memory formation theory, in this stage, the input information is encoded and 
stabilized through auditory and verbal pathways. In the second stage, participants were given 45 
seconds to recall the memorized words and articulate them based on their verbal memory. The 
correct articulation of each word, for instance, is considered a behavioral score and ultimately 
contributes to the participant's increased learning rate. 
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Figure 12  Illustration of memory processes in the RAVLT behavioral learning test, comprising two 
phases: Encoding and stabilization of information Recall of information 

 

In this study, as shown in Figure (13), there is little difference in power spectral density 
between the encoding-stabilization phase and the word recall phase. As observed in part (a) of 
this figure, the power of these two phases shows minimal difference at the beginning of the 
learning process (trial1). However, with the progression of learning and memory formation, by 
the final stage (trial8), the power spectral density of signals during the recall phase is significantly 
lower than during the encoding phase. This indicates better stabilization and structuring of 
memory in the final stage of behavioral learning. Additionally, the reduction in recall-phase 
power in trial8 reflects the participant's mastery and enhanced organization of information in 
memory. 
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Figure 13 Comparison of power spectral density in the two phases: encoding and stabilization (red 
curve) and recall (black curve): (a) During the first learning stage (trial1) (b) During the final 

learning stage (trial8) 

In the brain mapping derived from dynamic brain activity, the distribution of the Higuchi 
fractal dimension of signals during trial1 and trial8 is compared in the encoding and recall phases, 
as shown in Figure (14). As observed, the distribution of the Higuchi fractal dimension in the recall 
phase during trial8 is significantly lower than during trial1. This reduction reflects a decrease in 
the brain's fractal behavior due to the increased learning rate and enhanced coordination among 
various brain regions in trial8. 

Another noteworthy observation is that the dynamic activity of the right hemisphere is 
greater than that of the left hemisphere in both encoding and recall phases (Gottlieb, 2012; 
Rahmani et al., 2018). The results of the paired t-test for the Higuchi fractal dimension of sub-
frequency bands, align with previous studies, demonstrating the influence of the theta sub-
frequency band during both encoding and recall phases, and the impact of the beta band during 
recall (Bjork & Bjork, 1996; Kristoufek & Vosvrda, 2014). 
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Figure 14 Comparison of brain maps showing the distribution of the Higuchi fractal dimension in 
the encoding and recall phases during the first learning stage (trial1) and the final learning stage 

(trial8). 

Future objectives of this research could involve using healthy subjects and individuals with 
ADHD or groups with learning disorders for comparative studies. This would include evaluating 
the results of the RAVLT behavioral test alongside the extracted signal data and the chaotic 
behavior of the signals. 

 

4. Conclusion 
The multivariate statistical modeling in this study, as presented in Equation (14), demonstrates a 
significant linear relationship (correlation coefficient R=0.846) between the behavioral learning 
rate assessed via the RAVLT and the nonlinear parameters of the Hurst exponent, Higuchi fractal 
dimension (HFD), and approximate entropy of the signals. 

As the participant focuses on recalling and increasing memory content, a simultaneous 
increase in memory and decrease in entropy are observed in the brain signals. The contribution 
of the Higuchi fractal dimension (HFD) of brain signals is prominently evident in this model. The 
model's accuracy, is reported as 78.33%. 

In the second model designed in this study, the Higuchi fractal dimension (HFD) of 
frequency sub-bands was used as predictive variables to estimate the behavioral learning rate, 
as described in Equation (15). The correlation coefficient (𝑅 = 0.865) in this statistical regression 
model indicates its efficiency, with an accuracy of 73.27%. 

This model effectively predicts the RAVLT behavioral learning rate by analyzing the 
changes in the HFD of sub-bands. It highlights the role of the theta band at lower frequencies and 
the beta band at higher frequencies. Results show that the theta band exhibits the highest HFD 
value during the recall phase, while the beta band demonstrates the highest HFD value during 
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the encoding phase of information. These findings align with previous studies  (Bjork & Bjork, 
1996; Ceballos & Largo, 2018; Cowan, 2005; Wixted & Thompson-Schill, 2018). 

The study also confirms that the activity of the theta band plays a crucial role in 
coordinating brain regions and enhancing working memory to facilitate memory formation. 
Similarly, the activity of the beta band is associated with increased conscious and attentive brain 
performance. 
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