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Abstract 
Spike timing-dependent plasticity (STDP) is a fundamental mechanism that modulates synaptic 
strength in response to the precise temporal relationships between input and output spikes. 
However, the exact role of transmission delays in this mechanism, particularly at the network 
level, remains unclear. Delays introduce an additional layer of complexity, as they directly 
influence the timing of spikes and consequently the direction and magnitude of synaptic 
modifications through STDP. Understanding how these delays shape and are shaped through 
plasticity rules is critical to reveal their role in neural computations. In this study, we explored 
the effects of repetitive presentations of synchronous spike volleys on the distribution of 
transmission delays in a feedforward (FF) network through STDP. Our findings showed that STDP 
preferentially selected connections with shorter transmission delays, whereas connections with 
longer delays were weakened and pruned from the network. We showed that "learning of 
delays" by the impact of synchronous pulse packets propagated forward; that is, the modification 
of the delays began from the connections between upstream layers and continued to 
downstream ones. This forward propagation of the delay selection process was accompanied by 
the successful transmission of synchronous signals along the network. The interaction between 
transmission delays and synaptic modification established a dynamic feedback loop. The 
transmission of synchronous signals drove the selective strengthening or weakening of 
connections, while the evolving synaptic structure, in turn, shaped the pathways for signal 
propagation. This bidirectional interplay highlighted the fundamental role of delays in 
orchestrating both network dynamics and the plasticity rule. 
Keywords: Spike timing-dependent plasticity rule, delay selection, feedforward networks, signal 
transmission. 
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1. Introduction 
Activity-dependent synaptic modification is shaped by the precise timing of spikes from both pre- 
and postsynaptic neurons. Studies have shown that an excitatory synapse targeting an excitatory 
neuron is strengthened when a presynaptic spike precedes a postsynaptic spike. In contrast, if 
the postsynaptic spike occurs before the presynaptic spike, the synapse weakens (Caporale & 
Dan, 2008; Do, 1949; Markram et al., 1997).  

Experimental and computational studies have demonstrated that early input spikes are 
particularly effective in driving postsynaptic neurons. When such inputs are repeatedly presented 
in the same spike pattern, they enhance synaptic strength and reduce the latency of the 
postsynaptic response (Song et al., 2000; Gerstner & Kistler, 2002; Guyonneau et al., 2005; 
VanRullen & Thorpe, 2001). This temporal sensitivity underscores the importance of spike timing 
in sculpting neural responses and optimizing information transfer. 

Synchronization of spikes among a subgroup of neurons is crucial for effectively driving 
cortical networks, particularly in response to sparse thalamic input (Wang et al., 2010). Such 
synchronization can propagate through the layers of a feedforward (FF) network while preserving 
temporal precision   (Kumar et al., 2008; Kumar et al., 2010). However, successful propagation 
requires sufficiently strong stimuli which can trigger spike volleys with a high spike count and 
minimal timing dispersion. Variations in transmission delay can disrupt this synchronization by 
further dispersing incoming spikes. These delays are influenced by factors such as the physical 
distance between cortical regions and conduction velocities, both of which can vary significantly 
across brain areas (Kress et al., 2008; Kusano, 1966; Pérez et al., 2011).  

Transmission delays not only shape synaptic efficacy but also play a critical role in defining 
information and signal transmission within neural circuits (Pariz et al., 2021; Rezaei et al., 2020). 
Delays influence the synchronization of neuronal populations, affecting the generation and 
maintenance of oscillatory rhythms (Roohi & Valizadeh, 2022; Sadeghi & Valizadeh, 2014; 
Ghasemi Esfahani & Valizadeh, 2014) that underlie cognitive functions such as perception, 
attention, and working memory. In functional networks, delays modulate phase relationships 
between neuronal groups, thereby affecting the coherence of neural oscillations across different 
frequency bands (Ziaeemehr & Valizadeh, 2021; Ziaeemehr et al., 2020). This temporal 
structuring is crucial for coordinating activity across distant brain regions, enabling efficient 
communication and integration of information. Moreover, variations in conduction delays 
contribute to the formation of dynamic network states, where oscillatory interactions can either 
facilitate or suppress information flow depending on their phase alignment (Esfahani et al., 2016). 
These findings suggest that delays are not merely constraints but fundamental parameters that 
actively shape the functional architecture of the brain. 

Moreover, transmission delays, critically determine the emergent structure of neuronal 
networks through STDP. By biasing synaptic modifications based on the precise timing of pre- 
and postsynaptic spikes, delays actively contribute to the formation of stable connectivity 
patterns that underlie efficient information transfer and robust network dynamics (Madadi Asl 
et al., 2018; Madadi Asl et al., 2023). Interestingly, one study suggested that during the 
propagation of synchronous activity through layers, as well as during repeated presentations of 
spike volleys, transmission delays in the FF direction influence synaptic conductance. Shorter 
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delays are associated with stronger conductance compared to longer delays (Suri & Sejnowski, 
2002). This highlights the role of transmission delay as not merely a passive factor but an active 
determinant in shaping synaptic dynamics and network efficiency. 

2. Method 

Simulations were performed using the NEST simulator (v2.16.0) in Python, employing a temporal 
resolution of 0.1 ms to ensure precise representation of neuronal dynamics (Gewaltig & 
Diesmann, 2007; Morrison et al., 2007). Neurons were implemented via a leaky integrate-and-
fire framework augmented with conductance-based synaptic interactions. The governing 
dynamics of the membrane potential adhered to the following equation: 

Cm 
𝑑𝑉𝑚

𝑑𝑡
 = −Gleak (Vm(t) – Vreset) + Isyn(t)                                        (1) 

where Cm is the membrane capacitance, Gleak the leak conductance, Vreset the reset 
potential, and Isyn(t) the total synaptic current. Neurons fired when Vm reached a threshold value, 
resetting to Vreset and entering a refractory period (2 ms). Model parameters are detailed in                                              
Table 1. Initial membrane potentials were uniformly randomized to mitigate artificial synchrony. 

Synaptic currents were derived from time-varying conductances described as: 

Isyn(t) = Gsyn(t)(Vm(t) – Esyn)                                                    (2)    

The dynamics of Gsyn(t) for each presynaptic spike followed an exponential decay: 

Gsyn(t) = Gsyn exp(
−(𝑡− 𝑡𝑠)

𝜏𝑠𝑦𝑛
)                                                             (3) 

Where ts is the spike time, τsyn the synaptic time constant, and Esyn the synaptic reversal 
potential. Distinct parameters were used for excitatory and inhibitory synapses to reflect 
physiological properties (refer to Table 1).  

Network architecture comprised within-layer random excitatory (E) and inhibitory (I) 
connections as well as inter-layer excitatory FF pathways. Inter-layer synaptic connections 
adapted according to a spike timing-dependent plasticity (STDP) mechanism:   

∆𝑤 = {
−𝜆𝛼𝑒

−
|∆𝑡|

𝜏− , ∆𝑡 < 0

𝜆𝑒
−

|∆𝑡|

𝜏+ , ∆𝑡 ≥ 0

                                                               (4) 

This rule reinforced the temporal correlation between presynaptic and postsynaptic 
spikes, yielding a bimodal weight distribution between zero and Wmax (upper limit for synaptic 
modifications). For more detailed information, refer to Table 1. 

External inputs were generated through independent Poisson processes with different 
rates for E and I neurons to simulate asynchronous irregular (AI) background activity. 
Additionally, pulse packets (spike volleys) stimulation was delivered to designated neurons in the 
initial layer, with each packet containing 50 spikes temporally dispersed around a central time 
point by a Gaussian distribution (σ = 2 ms). 

To assess the irregularity of spike trains in excitatory neurons, we computed the 
coefficient of variation of inter-spike intervals (CVISIs) as follow:  
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CVISIs = 
σ𝐼𝑆𝐼𝑠

𝜇𝐼𝑆𝐼𝑠
                                                                       (5) 

To quantify the extent to which spike volleys drove the target neurons in the presence of 
AI background activity, we calculated the Signal-to-Noise Ratio (SNR) as the ratio of the variance 
of the spike count vector x(t) (bin = 10 ms) during the stimulus period to that during ongoing 
background activity: 

SNR = 
𝑉𝑎𝑟[𝑥(𝑡)𝑠𝑡𝑖𝑚]

𝑉𝑎𝑟[𝑥(𝑡)𝑜𝑛𝑔𝑜𝑖𝑛𝑔]
                                                                (6) 

 

A critical feature of the model was the inclusion of spike transmission delays, that is the 
time needed for the propagation of the spike along axons and dendrites. The FF axonal delays in 
our computational model were initially drawn from a wide distribution, whereas dendritic delays 
were fix at 0.1 ms. These delays played a pivotal role in shaping the network's temporal dynamics, 
particularly in the context of STDP-driven plasticity and the propagation of synchronous activity. 
This mechanism forms the core focus of the current study.          

To incorporate biologically plausible transmission delays in NEST, axonal conduction times 
were modeled explicitly. Intermediate relay neurons were introduced to emulate these delays, 
replicating presynaptic spiking activity with precise temporal offsets. This design effectively 
segregated axonal delays from dendritic delays, preserving fidelity in synaptic plasticity while 
adhering to known transmission dynamics.       

 
Figure 1: Schematic representation of a bi-layer network structure. Excitatory neurons (blue triangles) and inhibitory neurons 
(red circles) are randomly interconnected within each layer. A subset of excitatory neurons, designated as projection neurons (P 
neurons), project to a subset of excitatory neurons in the next layer in an all-to-all manner, forming a FF network. The projection 
sub-population constitutes approximately one-third of the excitatory neurons in each layer network. Within-layer connection 
weights are fixed according to the parameters listed in Table 1, while inter-layer E-to-E connections evolve based on the STDP 
rule with parameters presented in Table 1. 

                                         

                                             Table 1: Summary of Model Parameters 
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Name           Value            Description                                             

                                          

Cm  

Gleak 

Vth 

Vreset 

τref  

 

τexc         

τinh 

𝐸𝑠𝑦𝑛
𝑒𝑥𝑐 

𝐸𝑠𝑦𝑛
𝑖𝑛ℎ  

Jee 

Jei 

Jie 

Jii 

Jpe 

Jpi 

Jpp 

dE 

dI  

 

λ 

α 

τ+ 

τ - 

     

                                                                                     

Nexc 

Ninh 

Nproj 

                                               Neuron model parameters 

         250 pF           Membrane capacitance 

         16.67 nS        Membrane leak conductance 

         -54 mV           Firing threshold 

         -70 mV           Reset potential 

          2 ms              Refractory time period 

                                              Synapse model parameters 

          3 ms              Decay time constant of excitatory synaptic conductance            

          8 ms              Decay time constant of inhibitory synaptic conductance 

          0 mV             Reversal potential of excitatory synapses 

          -80 mV          Reversal potential of inhibitory synapses 

          0.33 nS          Within-layer excitatory-to-excitatory synaptic strength 

          5.5 nS            Within-layer excitatory-to-inhibitory synaptic strength 

          -6.2 nS           Within-layer inhibitory-to-excitatory synaptic strength 

          -15.0 nS         Within-layer inhibitory-to-inhibitory synaptic strength 

          0.25 nS          Synaptic strength from Poisson spike train to exc pop 

          0.4 nS            Synaptic strength from Poisson spike train to inh pop 

          0.4 nS            Synaptic strength from pulse packet to P neurons 

          1 ms              Within-layer excitatory synaptic delay 

          2 ms              Within-layer inhibitory synaptic delay 

                                                STDP Parameters 

       0.04                  Learning rate 

       0.9                    Modulates the magnitude of depression increments by λα              

       15.9 ms            STDP time constant for potentiation 

       19.3 ms            STDP time constant for depression 

 

                                                 Network model parameters 

        200                      Number of excitatory neurons per layer 

        50                        Number of inhibitory neurons per layer 

        70                        Number of projecting neurons per layer 
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ε 

εpp 

 

                                

        0.2                       Within-layer connection probability 

        1.0                        Inter-layer connection probability 

   

 

3. Results 
Evolution of FF synaptic strengths in a bi-layer FF network 

To establish the network background state and calibrate the balance of excitatory Poisson inputs 
to excitatory and inhibitory neuron populations, we systematically varied the Poisson input rate 
to the network and analyzed the resulting subthreshold activity. Specifically, we adjusted the 
Poisson input rate to the excitatory population while keeping the input rate to the inhibitory 
population constant. This approach enabled us to calculate the mean and standard deviation of 
neurons' membrane potentials for both excitatory and inhibitory neurons, providing a baseline 
characterization of the background activity of the network (Figure 2, top row of panel (a)). By 
applying three different Poisson input rates to the excitatory neurons, we induced three 
corresponding activity levels, as depicted in the two lower rows of Figure 2a. Across all these 
conditions, excitatory neurons exhibited low firing rates with high variability, quantified by 
coefficients of variation of inter-spike intervals (CV ISIs) around unity, as shown in Figure 2, bottom 
row. 

Next, we introduced FF excitatory connections between two identical network layers with 
the same Poisson input rate to excitatory neurons in each layer network. These connections were 
organized in an all-to-all manner such that every projection neuron in the first layer was 
connected to all projection neurons in the second layer. The initial synaptic strengths of these FF 
connections were drawn from a normal distribution with a mean of 0.1 nS and a standard 
deviation of 0.01 nS. These connections were plastic, governed by a spike timing-dependent 
plasticity (STDP) rule with parameters λ= 0.04 and Wmax= 0.4 nS, allowing for dynamic 
modification of synaptic strengths based on the spike timing. The FF delays were drawn from a 
wide uniform distribution ranging from 2 to 16 ms. 

The Pulse packets were introduced into the projection neurons of the first layer at mean 
intervals of 250 ms, with fluctuations of ±40 ms around the mean arrival times. The simulation 
spanned a total of 100 seconds, and was divided into three distinct phases. During the initial 5  
seconds no pulse packets were applied, providing a baseline period to observe network activity 
prior to learning. The pulse packets were then applied for the following 85 seconds, marking the 
learning phase driven by the STDP rule. Finally, the network response to pulse packets was 
recorded during the last 10 seconds, representing the post-learning phase. 

The results demonstrate that, regardless of the input rate, connections with shorter 
transmission delays were consistently strengthened, while connections with longer delays were 
weakened (Figure 2b, c). The primary distinction between the three asynchronous irregular 
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activity states, each associated with a different firing rate, lies in the number of connections 
which were either strengthened or pruned. When the increased Poisson input rate to excitatory 
neurons raised the mean membrane potential of these neurons closer to the firing threshold, a 
greater number of connections were weakened. Given the initial distribution of delays, longer 
delays were inherently more likely to be depressed. However, increasing the input rate to 
excitatory neurons lowered the threshold delay above which connections were eliminated. 

A notable outcome of this process was the reduction in the average delay of strengthened 
connections (defined as the connections with weights greater than 0.8Wmax, as shown in Figure 
2d), which ultimately led to a faster signal propagation to the second layer. Furthermore, the 
resulting narrower distribution of delays reduced the temporal disparity of spikes arriving at the 
second layer, thereby facilitating more efficient and coherent signal transmission. 

To further clarify this observation, when the membrane potential of neurons approached 
the firing threshold, the excitability of postsynaptic neurons increased. This heightened 
excitability caused postsynaptic neurons to respond preferentially to a smaller subset of 
incoming spikes within each pulse packet, specifically those spikes which arrived through 
connections with shorter delays. Additionally, the increased excitability enabled postsynaptic 
neurons to fire spikes more quickly following each synchronous input. 

The earlier spiking of postsynaptic neurons resulted in a larger proportion of presynaptic 
spikes arriving after the postsynaptic spikes, which, according to the STDP rule, led to the 
weakening of a greater number of connections. This mechanism underlies the observed pruning 
of connections with longer delays and the strengthening of connections with shorter delays. Due 
to the increased weakening of connections in this scenario, the average weight is lower through 
STDP (Figure 2e). 

It is worth noting that when neurons in the second layer were activated in response to 
inputs transmitted through shorter-delay inter-layer connections, subsequent inputs were less 
likely to elicit additional responses. This reduced responsiveness is driven by two key 
mechanisms: First, the refractory period of individual neurons, lasting for 2 milliseconds, 
temporarily prevented them from firing again. Second, recurrent inhibitory connections within 
the second layer increased inhibitory activity for a duration corresponding to the network’s 
amplification dynamics as well as the decay time constant of inhibitory connections, which is 
typically on the order of tens of milliseconds. Together, these mechanisms rendered the network 
unresponsive to inputs arriving after the initial spikes of the target population. This dynamic 
effectively reinforced the preference for shorter-delay connections by selectively strengthening 
the impact of early-arriving inputs. 
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Figure 2: Selection of shorter transmission delays in pulse packet propagation. (a) The mean membrane potential of excitatory 
(green bars) and inhibitory (orange bars) neurons is shown for three different Poisson input rates to the excitatory neurons' 
population when the network was isolated. Error bars represent the standard deviation of the membrane potentials. For the three 
cases, the spiking activity of neurons is displayed as raster plots. Irregularity of excitatory neurons' activity is quantified by 
coefficient of variation of inter-spike intervals for each excitatory neuron, averaged across all excitatory neurons for each case. 
Additionally, the mean firing rate of excitatory neurons is shown to be increasing with increased input Poisson rate to excitatory 
neurons. (b) Weight changes for 20 FF connections are shown under the three background activity conditions (top: 5.5 kHz to exc, 
middle: 6.0 kHz to exc, bottom: 6.5 kHz to exc). The color of each plot represents the spike transmission delay of the corresponding 
connection. (c) The results indicate that connections with shorter transmission delays were strengthened, while longer delays 
tended to be weakened. This trend is clearly illustrated in the final distribution of weights and transmission delays in each initial 
condition. (d) The number of weakened connections is higher when background fluctuations are closer to the spike threshold. The 
weakening of a larger number of connections with longer delays results in a reduction of the mean transmission delay for 
strengthened connections. Ultimately, these changes lead to faster responses in the receiving layer. (e) The mean final weight of 
connections (during the post-learning phase) is lower when the mean membrane potential of neurons is closer to the threshold. 

As an illustrative example, we set the input rate to excitatory neurons to 6.5 kHz to bring 
their background activity close enough to the firing threshold, and investigated the possibility of 
propagation of pulse packets across the FF network. As also suggested by the Signal-to-Noise 
ratio (SNR) before and after learning in Figure 3, the propagation of pulse packets increased 
significantly after the learning phase. 

The net result of this process is that connections with shorter transmission delays were 
strengthened, whereas those with longer delays were weakened. Consequently, signals arrive at 
the second layer both more quickly and in a more synchronized manner, as the reduced temporal 
dispersion of inputs fostered faster and more reliable propagation of pulse packets. 
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Figure 3: Enhancement of pulse packet propagation through STDP. Pulse packet propagation was significantly enhanced after 
the learning process (b) due to pruning of connections with larger transmission delays compared to pre-learning phase (a). In the 
top rows, the spiking activity of the projection neurons (black), excitatory neurons (green), and inhibitory neurons (orange) are 
shown. In the bottom rows, the rate histogram of the projection neurons in the second layer is displayed (bin = 10 ms). The SNR 
increased after the modification of synaptic connections through STDP. 

 

Facilitation of pulse packet propagation in a multi-layer network through forward-propagation 
of synaptic modifications 

To investigate how the results of the two-layer network motif translate to a FF network, we 
considered the modification of synapses and its effect on the transmission of pulse packets across 
a multi-layer FF network with distributed inter-layer transmission delays. To this end, we 
considered a six-layer network and set the rate of external Poisson drive to excitatory neurons in 
all layer networks to 6 kHz (Fig. 2a, middle column) and stimulated the first layer with pulse 
packets (number of spikes in each volley 50, and temporal dispersion of 2 ms) as in the two-layer 
motif. The initial weights of the inter-layer connections were chosen from a normal distribution 
with a mean of 0.2 nS and a standard deviation of 0.01 nS. In addition, transmission delays from 
one layer to the next were selected from a normal distribution with a mean of 30 ms and a 
standard deviation of 3 ms. 

As shown in Figure 4a, modification of the synaptic weights between successive pairs of 
layers depended on the transmission delay of the corresponding connection. Specifically, 
connections with shorter delays were more likely to be potentiated, while those with longer 
delays tended to be depressed. Notably, the delay selection and stabilization of synapses in 
upstream layers occur more rapidly. For example, while the connections between the first and 
second layers were stabilized within the first 20 seconds, stabilization of the connections 
between the last two layers took more than 200 seconds. 
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Moreover, as illustrated in Figure 4b, c, the number of depressed/pruned connections 
was higher in the primary layers (represented in darker colors) compared to the final layers 
(represented in lighter colors). This progressive pruning resulted in a widening of the final 
distribution of delays as one advanced through the hierarchical FF network quantified by 
increasing std of distribution of final inter-layer delays as illustrated in Figure 4d. 

To explain this observation, we note that initially a pulse packet dissipated after a few 
layers because of the large disparity of spike transmission delays. The wide distribution of spike 
transmission delays caused spikes to arrive sparsely to the subsequent layer, exerting a much 
weaker effect on postsynaptic neurons. Thus, it could be predicted that during pulse packet 
propagation in a multi-layer FF network, the signal strength from the previous layer gradually 
decreased. This reduction in signal strength along the network disrupted effective responses in 
the deeper layers. The more temporally dispersed and less strong responses of deep layers, the 
more disrupted the mechanism of the selection of short delays by STDP. Therefore, the evolution 
of the synapses between deep layers, was initially led by the baseline spiking of the neurons with 
no preference for the potentiation of shorter-delay connections (Figure 4a, e).   

During this process, modification of the synapses between the most upstream layers led 
to the narrower distribution of the delays and, hence, to more synchronized inputs to the 
subsequent layers. Therefore, once the connections between the first layers were stabilized, 
modification of the connections in the next layers was accelerated and eventually inter-layer 
connections were evolved with the same pattern: Connections with shorter delays were more 
likely to survive and be potentiated. This delay-learning process took place through a forward 
propagation scenario as discussed above (Figure 4a, e). 

Taken together, effective and fast responses were possible through the strengthening of 
connections with shorter transmission delays and the weakening of connections with longer 
transmission delays. Weakening connections with longer transmission delays reduced input 
dispersion, increasing the likelihood of spike generation in postsynaptic neurons. Additionally, 
strengthening connections with shorter transmission delays ensured faster responses from 
postsynaptic neurons. The significant outcome of such synaptic modifications was the network's 
ability to successfully propagate pulse packets (Figure 4f, lower panel) which otherwise failed to 
propagate across the layered network (Figure 4f, upper panel). 
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Figure 4: Stable propagation of a pulse packet following the elimination of connections with longer delays in a multi-layer 
feedforward network. (a) The evolution of 20 FF connections between pairs of layers are shown. The lowest panel corresponds to 
the connections from layer one to layer two, and the panels are arranged sequentially up to the top panel. The colors within each 
panel represent the transmission delay of each connection. (b) The distribution of weights and delays for connections between 
each successive pair of layers are shown. Due to the widening of spike times through forward propagation of spike volleys, the 
precision of selective modification decreases as the hierarchy advances. (c) The number of weakened connections was higher 
between the initial layers. (d) The average transmission delay of strengthened connections was lower in the connections between 
the initial layers. Additionally, the standard deviation of the delays decreased due to the weakening of many connections. (e) The 
mean and standard deviation of weights in potentiated connections across all layers are shown. The faster modification of 
connections between the initial layers is clearly evident, reflecting more rapid adjustment of connections between initial layers. 
(f) Failed propagation before the modification of inter-layer connections (top panel), and successful propagation after the 
modification of inter-layer connections (bottom panel) are shown. Spiking activity of projection neurons across all layers is 
displayed as a scatter plot. Below the spiking activity, the output rate histogram of whole projection neurons across the six layers 
is shown, illustrating the improvement in synchronization and spike transmission. 

The interaction between signal transmission and delay-dependent synaptic modifications 
governed by spike timing-dependent plasticity created a positive feedback loop. Specifically, the 
preferential strengthening of synapses with shorter delays, coupled with the pruning of those 
with longer delays, resulted in more synchronized and robust signal propagation. This, in turn, 
accelerated the response of the recipient layer, further refining connectivity through additional 
synaptic pruning. As a consequence, the remaining connections underwent further potentiation, 
reinforcing this iterative process. 

To investigate this effect systematically, we modulated the upper limit of synaptic weights 
achievable through STDP and examined its impact on network dynamics. Our results, illustrated 
in Figure 5a, indicate that increasing this upper limit, accelerated significantly the rate of synaptic 
weight modifications across layers. This enhancement was accompanied by a rise in the total 
number of weakened connections between successive layers of the FF network (Figure 5b). 
Moreover, we observed that the average overall transmission delay across all layers decreased 
(Figure 5c), while the mean strength of FF connections increased (Figure 5d). These structural 
adjustments facilitated the faster propagation of pulse packets, ultimately enhancing the 
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efficiency of information transfer when the upper bound of synaptic weights was elevated in the 
model (Figure 5e, f). 

 
Figure 5: Higher Wmax enhanced rapid propagation of pulse packets. (a) The evolution of inter-layer connections in a six-layer FF 
network, including the mean and standard deviation of weights for potentiated connections, as well as the number of depressed 
connections, is shown for three different upper limits of weights: Wmax = 0.5 nS (left column), Wmax = 0.7 nS (middle column), and 
Wmax = 0.9 nS (right column). (b-d) The total number of depressed connections, sum of the mean delay of potentiated 
connections, and mean weights of connections after the modification for different values of Wmax. (e, f) The transmission time of 
a single pulse packet decreased for higher values of Wmax. 

 

4. Discussion 
Our results demonstrate that synapses with shorter transmission delays are preferentially 
potentiated through spike timing-dependent plasticity (STDP), leading to the progressive 
reduction of temporal dispersion in spike volleys. This effect enhances the synchronization of 
spikes arriving at downstream layers, facilitating more efficient and reliable signal propagation. 
The observed preference for shorter delays results from the interplay between STDP and the 
inherent properties of neural excitability, where postsynaptic neurons preferentially respond to 
earlier-arriving inputs. These findings underscore the role of temporal constraints in shaping 
neural computation and suggest that natural synaptic learning rules favor rapid and efficient 
transmission within cortical circuits. 

In multi-layer FF networks, our simulations reveal a forward propagation of synaptic 
modification, where early layers undergo rapid reorganization, establishing conditions that 
subsequently accelerate plasticity in deeper layers. Initially, synaptic modifications occur without 
a preference for delay selection in the later layers due to the broad dispersion of spike arrival 
times. However, as upstream layers undergo delay-dependent plasticity, the temporal precision 
of transmitted spikes improves, enabling downstream layers to refine their connectivity with a 
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similar preference for shorter delays. This progressive stabilization of synaptic architecture 
indicates that hierarchical processing networks can self-organize to optimize signal propagation 
efficiency. Additionally, increasing the upper limit of STDP-driven synaptic weights further 
accelerates this process, suggesting that synaptic strength constraints play a crucial role in 
shaping network-wide dynamics. 

Overall, our results highlight the intricate relationship between spike timing-dependent 
synaptic plasticity, and transmission delays in FF networks. By systematically favoring synapses 
with shorter delays, the network enhances both temporal fidelity and information transfer 
efficiency. This mechanism may have implications for understanding neural circuit organization 
in biological systems, where transmission delays are non-negligible and subject to plastic 
modifications. Furthermore, these findings may inform the design of artificial neural networks, 
where optimizing transmission delays could improve computational efficiency. Future research 
could explore how additional factors, such as inhibitory plasticity and recurrent interactions, 
further refine the delay-selection process and its impact on complex neural computations. 

5. Conclusion  
Our study revealed the existence of a self-organized mechanism that leads to faster spike timing 
at the postsynaptic site.   Such a mechanism could involve a dynamic interaction between forward 
propagation of spike volleys and modification of corresponding connections through spike-
timing-dependent plasticity (STDP). At the core of this interaction lies the transmission delay 
between populations of neurons. Transmission delay is one of the key determinant factors in 
timing the arrival of spikes at the postsynaptic site.  

Our results showed the selective modification of connections through STDP during the 
repeated forward propagation of spike volleys. The mechanism underlying this selective 
modification relied critically on the transmission delay in forward connections: Shorter 
transmission delays led to potentiation, whereas longer transmission delays resulted in synaptic 
depression  through STDP.   

The boundary at which the selective mechanism begins depends critically on the spike 
timing of postsynaptic neurons, while the width of this boundary relies on the level of 
synchronization among them. Effective and rapid propagation of spike volleys enables a rapid 
and precise selective mechanism, which in turn facilitates more efficient and faster propagation. 
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