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Abstract 
Parvalbumin interneurons (PV-INs) are a subset of GABAergic inhibitory neurons that play a crucial 
role in regulating cortical and hippocampal circuits. Dysfunction of PV-INs is implicated in 
neurodevelopmental and psychiatric disorders. Maternal separation (MS) is a well-established 
rodent paradigm used to study adverse early-life experience and its long-term behavioral effects. 
MS has been shown to reduce PV-INs expression in different brain regions leading to disrupted 
cognitive behaviors. This research investigated the long-term effect of the MS on the volume of the 
PV-INs in the CA1 subregion of the hippocampus in rats.  Male rat pups were separated from their 
mothers for 3 hours daily from postnatal day (PND) 1 to PND 14. After weaning, the animals were 
maintained in a standard manner until adolescence. At adolescence, brain samples were extracted 
and the volume of the PV-INs in the CA1 area of the hippocampus was measured using the 3D 
stereological technique with nucleator method.  The results showed that the volume of the PV-INs 
in the CA1 subregion of the hippocampus in maternally separated rats was significantly smaller (p < 
0.05) than the intact rats in adolescence.   This study showed that early life adverse experiences can 
have a persistent effect on the volume of PV-INs in the hippocampus into adolescence and suggests 
that MS may lead to a disruption of synaptic excitatory inhibitory balance and may be associated 
with symptoms related to autistic behaviors resulting from MS that have been reported in previous 
studies. 
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1. Introduction 
PV-INs play a vital role in maintaining the balance between excitation and inhibition in the brain 
(Nahar et al., 2021). Owing to their role as strong modulators of activity of pyramidal neurons, 
they can be a potential target to intervene against glutamate imbalances as well as against 
excitotoxicity in diverse psychiatric and neurological conditions such as autism spectrum 
disorders, schizophrenia, Alzheimer's disease, and drug abuse (Marín, 2012). There is evidence 
that these interneurons are significantly vulnerable under conditions with cognitive impairment 
(Deng et al., 2019). The functional complexities of PV-INs highlight the need to further investigate 
their roles, particularly considering the mounting evidence of their morphological and synaptic 
diversity. Interneurons are intrinsic to the hippocampus, playing a critical role in processing 
stimuli from the environment and encoding memories (Zou et al., 2016). The ventral 
hippocampus was identified as a regulator of social memory, with parvalbumin interneuron 
having a role in discriminating between new and familiar experiences (Zou et al., 2016). Within 
CA1, where a large percentage of GABAergic cells are interneurons of parvalbumin type, these 
interneurons are significantly active in the retrieval phase of social memory and not in its 
encoding phase (Aery Jones et al., 2021). Hyperactivation of PV-INs was found to disrupt mice's 
recognition of familiar mice, demonstrating their role in social discrimination (Bezaire & Soltesz, 
2013). Additionally, PV-INs play a role in producing gamma oscillations needed for brain function 
and cognitive processing, especially in cortical information processing (Engel & Singer, 2001). 
Optogenetic stimulation of these interneurons can elicit gamma oscillations in cortical networks, 
whereas parvalbumin deficiencies are associated with elevated gamma oscillations (Cardin et al., 
2009). With PV-INs having the ability to stabilize CA1 communication networks over long 
timescales, investigation of these interneurons in the highly dense CA1 region of the 
hippocampus represents a fruitful avenue through which to understand pathophysiology and 
mechanisms of disease development in neurological conditions. 

 Neural development is very sensitive to environmental stimuli, especially in early 
postnatal stages. Any adverse experience, such as maternal separation (MS) in critical periods of 
development, has far-reaching effects on neuronal maturation of circuits, including PV-INs (Ueno 
et al., 2017). Enriched or impoverished conditions have been demonstrated to impact 
parvalbumin expression and structural evolution, possibly with long-term behavioral effects 
(Feng et al., 2021). One of the strongest early environmental influences is maternal care quality. 
Disruptions in infant-mother attachment—like extended maternal separation—have been 
associated with deficits in emotional and cognitive growth (Li et al., 2013). They are also capable 
of simulating early-life stress in rodents and underlie typical symptoms of autism spectrum 
disorder, including diminished social interaction and heightened repetitive behaviors (Reisi‐
Vanani et al., 2024), (Lippmann et al., 2007). Previously, we showed that maternal separation not 
only causes autistic-like behaviors, but also results in changes in hippocampal structure, 
specifically an increase in the CA1.SR volume, mediated by changes in the oxytocin system 
(Mansouri et al., 2020). Recent neuroanatomical and molecular evidence has implicated PV-INs 
in the CA1 region as particularly susceptible to early adversity and as possibly crucial to determine 
the hippocampal involvement in neurodevelopmental disorders (Riga et al., 2014). Following 
earlier accounts of increased CA1 volumetric changes in animals separated from their mothers, 
this study examines if these separations also impact PV-INs volume in this region. With a 
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particular focus towards structural plasticity in the hippocampus, this work sets out to continue 
to shed light on the possible cellular mechanisms by which early adverse experiences may 
contribute to neurodevelopmental disorders such as autism. 

2. Method 

Animals and Maternal Separation Procedure 
In this study, Wistar male and female rats weighing 250 grams were purchased from the animal 
house of the Faculty of Biology of the Shahid Beheshti University. They were randomly kept in 
cages for mating. After ensuring pregnancy, female rats were kept in individual cages until the 
day of delivery. The born rats were randomly divided into two groups: control and MS (n=5 per 
group). The animals were kept in standard conditions with controlled temperature (21°C), 
controlled humidity, and a 12-hour light-dark cycle, and they had free access to food and water. 
We considered the day of offspring birth as postnatal day 0 (PND 0). The maternal separation 
procedure started at PND 1 in which offspring were separated from the mothers for 3 hours daily 
(9 am- 12 am) during PND 1–14, each pup in a separate compartment. Control littermates were 
kept with their mothers until they were weaned (PND 21). After weaning all animals were kept 
at standard condition without any intervention until adolescent (PND 42). All stages of this 
research have been conducted in accordance with Ethics Committee standards of Shahid 
Beheshti University (IR.SBU.ICBS.97.1045). 

Tissue processing 
At PND 42 rats were deeply anesthetized with ketamine (Ratiopharm, Germany; 150 mg/kg,i.p) 
and were then transcardially perfused with ice-cold heparinized saline for 10 min, and 
subsequently with 4 % paraformaldehyde (PFA) solution in 0.1 M phosphate buffer (PB, pH 7.4) 
for 10 min. The brains were removed from the skull of the sacrificed animals and kept in 4 % PFA 
until tissue processing. Right or left hemisphere of brain was randomly selected and kept in a 30 
% sucrose solution for 72 h. Subsequently, the brains were frozen using liquid nitrogen, and were 
cut coronally at 50 μm thickness on a cryostat (SCILab, Cool-Cut, SCI85683, England). The first 
section of each series was chosen randomly using a random table. The sections from 
hippocampus, were selected based on a systematic sampling principle, with a section sampling 
fraction of 1/12. Brain sections were then immune-stained with anti-parvalbumin antibody for 
quantifying the volume of the PV positive interneurons in the CA1 area of the hippocampus. 

3D quantification of the volume of the PV positive interneurons 
To measure the volume of PV-INs, a light microscope (Olympus BX56) and NewCAST software 
((Visiopharm, Hørsholm, Denmark)) were used. All slices of each brain were image captured with 
a 4x objective lens. Then, the area of interest (CA1) was delineated with 100x objective lens. 
Using the nucleator method with 6 lines while the mode was vertical uniform random (VUR) 
based on the assumption of rotational symmetry of the cells the volume of the soma of 
interneurons (Figure 1B) was measured in each brain for at least 50 interneurons at a height of -
5 to -30 µm. The criterion for selecting cells was that the cell body was completely clear. 

Statistical analysis of data 
GraphPad Prism software version 10 (GraphPad Software, San Diego, CA, USA) was used to 
analyze the data and generating graphs. The normality of the data distribution was examined 
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using Q-Q plot. The difference between groups (Control and MS) was analyzed using independent 
t-test. The significance level was set at p < 0.05. The results are presented as mean ± standard 
deviation (SD). 

3. Result 
As shown in figure 1A, independent t-test analysis demonstrated a significant difference between 
the volume of the PV-INs in the CA1 area of the control and MS groups (p = 0.009). Which means 
that maternal separation had led to enduring morphological change in the size of the PV-INs of 
this area.  

 

  

Figure 1. (A) Effect of the maternal separation on the volume of the PV-INs in CA1 area of the hippocampus, **P < 
0.01; (B) Estimation of the volume of the PV-INs using objective lens 100x applying nucleator method in NewCAST 
software. Scale bar=45 µm 

4. Discussion 
This study showed that early life adverse experiences, such as MS, can have a persistent effect 
on the volume of PV-INs in the hippocampus CA1 area. This region was chosen because we had 
seen structural changes of it in our previous study in relation to the emergence of autistic 
behaviors in adolescence due to MS (Mansouri et al., 2020). Considering the role of PV-INs in 
autism spectrum disorders (Yao & Li, 2024), it is important to investigate possible changes in 
them due to environmental factors . Although the effect of MS on changes in the volume of PV-
INs has not been reported so far, our result is consistent with previous studies that examined the 
effect of MS on the number of PV-INs and showed that MS leads to lower PV-INs cell counts in 
the hippocampus and PFC (Brenhouse & Andersen, 2011). Studies report decreased PV 
immunoreactivity in the prefrontal cortex (PFC), hippocampus, and amygdala following maternal 
separation (Perlman et al., 2021). In these studies, (Czéh et al., 2015; Filipović et al., 2018) the 
effect of stress on PV-INs using a maternal or social deprivation model was investigated, in which 
PV-INs were detected using immunohistochemical staining and their number or density was 
counted. They also measured the expression of PV-INs mRNA or protein. The results showed that 
the number of PV-INs and PV protein expression were reduced in the hippocampus of stressed 
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animals. It has been debated whether these findings were due to PV-INs death or reduced 
maturation. It seems that this reduction occurs more due to cell immaturity than cell death 
because PV-INs reductions in the hippocampus was not associated with increased apoptotic 
markers. Anyway, this reduction may impair GABAergic inhibition, leading 
to hyperexcitability and disrupted neural synchrony. MS can lead to dendritic 
atrophy and reduced perineuronal nets (PNNs) extracellular matrix structures that stabilize PV-
INs synapses (Gildawie et al., 2020) which may contribute to long-term deficits in synaptic 
plasticity and cognitive flexibility. PV-INs dysfunction is linked to impaired working memory and 
attention, seen in MS models (Abraham et al., 2023). Reduced PV activity in the amygdala and 
PFC is associated with increased anxiety and depression-like behaviors (Page et al., 2019). PV-INs 
abnormalities are implicated in schizophrenia, autism, and mood disorders (Juarez & Martínez 
Cerdeño, 2022), which are more prevalent in individuals with early-life stress. Early-life 
adversities increases oxidative damage, which PV-INs (high metabolic demand) are particularly 
sensitive to (Horn et al., 2019). Elevated glucocorticoids from maternal separation may suppress 
PV-INs development (Soares et al., 2020). 

The CA1 region of the hippocampus plays a crucial role in memory formation, spatial 
navigation, and social cognition (Geiller et al., 2023), and emerging research suggests it may be 
involved in autism spectrum disorder (Tao et al., 2022). Studies in ASD mouse models show 
hyperexcitability in CA1 pyramidal neurons, leading to altered synaptic plasticity (LTP/LTD) (De 
Introna et al., 2025). CA1 may have disrupted excitatory (glutamatergic) and inhibitory 
(GABAergic) signaling, contributing to ASD-like behaviors (e.g., repetitive behaviors, social 
deficits). CA1 helps distinguish similar memories and its dysfunction may contribute to cognitive 
inflexibility in ASD (Banker et al., 2021). Some individuals with ASD show difficulties in context-
dependent learning (Skoyles, 2011), which relies on hippocampal processing. The hippocampus 
modulates stress via the HPA axis (Cole et al., 2022) so CA1 abnormalities may contribute to 
comorbid anxiety in ASD. Altered hippocampus connectivity with prefrontal cortex and amygdala 
may affect social-emotional integration (Ghasemi et al., 2022). We suggest that drugs targeting 
NMDA/AMPA receptors or GABAergic transmission in CA1 may help restore balance. The CA1 
area’s role in ASD likely involves synaptic dysfunction, memory processing deficits, and social-
cognitive impairments. Further research is needed to clarify whether CA1 abnormalities are a 
cause or consequence of ASD and whether targeting this region could improve symptoms.  

MS in rodents has significant effects on hippocampal structure and function, particularly 
in the CA1 region. For example, MS leads to reduced dendritic branching and spine density in CA1 
pyramidal neurons, impairing synaptic connectivity(Nakhal et al., 2025) and can impair Long-term 
potentiation (LTP) (Hao et al., 2025), enhance long term depression (LTD), and reduce the 
frequency of mEPSCs in pyramidal neurons in the CA1 region (Hu et al., 2024) disrupting memory 
encoding and flexibility. Maternal separation induces lasting structural, functional, and molecular 
changes in the CA1 hippocampus, contributing to cognitive and emotional deficits (Albadawi, 
2025). These effects highlight the importance of early-life environment in shaping hippocampal 
health and our result, by showing changes in the volume of interneurons in this area due to MS, 
is consistent with the above studies, indicating the importance of early life experiences on the 
formation of the hippocampus and its relationship with neurodevelopmental disorders as soma 
size is a key determinant of metabolic capacity, firing properties, and connectivity, influencing 
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how the cells shape circuit dynamics (Beaulieu-Laroche et al., 2021). Accordingly, it seems that 
reduced soma size of PV-INs may affect their specialized roles in inhibition, oscillation generation 

(e.g., gamma rhythms), and plasticity which finally can have behavioral consequences. 

5. Conclusion  
Taken together, this study showed that MS, which can also be associated with the emergence of 
autistic-like behaviors in rat according to the previous studies, induces long-lasting impairments 
in PV-INs in the CA1 area of the hippocampus that is in addition to affecting the number of PV-
INs, affects their size and leads to a significant reduction in the soma volume. This reduction in 
volume may affect the synaptic connections and ultimately the necessary inhibitory effects. This 
can be considered by researchers as a therapeutic target in autism spectrum disorders and other 
psychiatric disorders in which the role of interneurons is discussed. 
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